

LOONGSON

龙芯 1C101 处理器数据手册

2018年9月29日

龙芯中科技术有限公司

自主决定命运,创新成就未来

版权声明

本文档版权归龙芯中科技术有限公司所有,并保留一切权利。未经书面许可,任何公司和个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究其法律责任。

免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

龙芯中科技术有限公司

Loongson Technology Corporation Limited

地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼

Building No.2, Loongson Industrial Park, Zhongguancun Environmental Protection Park

电话 (Tel): 010-62546668 传真 (Fax): 010-62600826

阅读指南

《龙芯 1C101 处理器数据手册》主要介绍龙芯 1C101 的接口结构、特性、电气规范及硬件设计指导。

修订历史

序号	更新日期	版本号	更新内容	
1	2018-3-26	V0.1	初稿, 内部评估版本	
2	2018-9-29	V1.0	修正封装引出图,更新机械尺寸	

目 录

目录 …		i
第一章	概述	1
1.1	特性	1
1.2	结构框图	2
1.3	文档约定	3
	1.3.1 信号命名 · · · · · · · · · · · · · · · · · · ·	3
	1.3.2 信号类型 · · · · · · · · · · · · · · · · · · ·	3
	1.3.3 数值表示	3
	1.3.4 寄存器域	3
第二章	引脚定义 · · · · · · · · · · · · · · · · · · ·	5
2.1	QFP80 封装引脚 · · · · · · · · · · · · · · · · · · ·	5
2.2	上电配置 · · · · · · · · · · · · · · · · · · ·	8
第三章	功能描述 · · · · · · · · · · · · · · · · · · ·	11
3.1	时钟结构 · · · · · · · · · · · · · · · · · · ·	11
3.2	上电复位 · · · · · · · · · · · · · · · · · · ·	12
3.3	看门狗	12
3.4	输入保持功能	12
3.5	安全特性	12
3.6	安装模式	13
第四章	电气特性 · · · · · · · · · · · · · · · · · · ·	15
4.1	电源	15
	4.1.1 推荐工作条件	15
	4.1.2 绝对最大额定值	15
4.2	SPI Flash 接口特性·····	15
4.3	I2C 接口时序 · · · · · · · · · · · · · · · · · · ·	15
4.4	ADC 特性 · · · · · · · · · · · · · · · · · ·	16

第五章	热特性	17
5.1	热参数	17
5.2	焊接说明 · · · · · · · · · · · · · · · · · · ·	17
第六章	引脚排列和封装 · · · · · · · · · · · · · · · · · · ·	19
第七章	封装机械尺寸 · · · · · · · · · · · · · · · · · · ·	21

表 目 录

1.1	信号类型约定	3
2.1	QFP80 引脚定义 · · · · · · · · · · · · · · · · · · ·	5
2.2	引脚复用关系	7
2.3	上电配置引脚	8
3.1	时钟定义	11
4.1	推荐工作条件	15
4.2	绝对最大额定值	15
4.3	SPI Flash 特性 · · · · · · · · · · · · · · · · · ·	15
4.4	I2C 特性 · · · · · · · · · · · · · · · · · ·	15
4.5	ADC 特性	16
5.1	龙芯 1C101 热特性参数和极限值 · · · · · · · · · · · · · · · · · · ·	17
5.2	回流焊接参数	18

图目录

1.1	龙芯 1C101 结构图	2
3.1	时钟结构图	11
4.1	I2C 接口时序	16
6.1	QFP64 封装顶视图 · · · · · · · · · · · · · · · · · · ·	19
7.1	封装机械尺寸图	21

第一章 概述

龙芯 1C101 是在龙芯 LS1C100 基础上针对门锁应用而优化设计的单片机芯片。该芯片集成 CPU、Flash、SPI、UART、I2C、RTC、TSENSOR、VPWM、ADC 等功能模块,在满足低功耗要求的同时,可以大幅减少板级成本。

1.1 特性

龙芯 1C101 具有以下关键特性:

- LS132R 处理器核
 - 32 位单发射
 - 顺序执行、三级流水
 - 无 cache、MMU
 - EJTAG 调试接口支持断点、单步
 - 4KB 指令 SRAM、4KB 数据 SRAM
 - 最高主频 10MHz
- 片上 Flash
 - 128KB 容量
 - 每页 128 字节
 - 支持代码加密
- SPI 控制器
 - 3 个片选
 - 独立的 Flash 接口,支持启动
- UART 控制器
 - 3 路两线串口
 - 1 路支持唤醒
- I2C 控制器
 - 1路
 - 支持主从模式
 - 速率 100/400Kbps
- VPWM 控制器
 - 1路
 - 支持 6K 采样率
 - 支持 ADPCM 压缩

- ADC
 - 6 路输入
 - 12 位分辨率
- 看门狗
 - 上电默认开启
 - 调试模式下暂停
- 定时器
 - 1路
 - 支持单次、循环模式
 - 调试模式下暂停
- GPIO
 - 64 路复用 GPIO
 - 上电默认为 GPIO 功能, 高阻态

1.2 结构框图

芯片以龙芯 LS132R 处理器为计算核心,采用 32 位 AXI+APB 两级总线连接片上资源和外围接口。芯片的结构如图1.1所示。

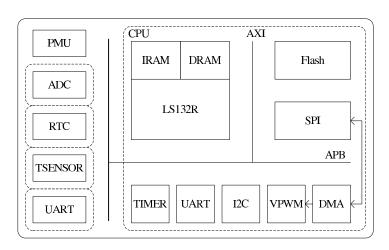


图 1.1: 龙芯 1C101 结构图

1.3 文档约定

1.3.1 信号命名

信号名的选取以方便记忆和明确标识功能为原则。低有效信号以 n 结尾,高有效信号则不带 n。

1.3.2 信号类型

代码 描述 模拟 Α DIFF I/O 双向差分 DIFF I 差分输入 DIFF O 差分输出 输入 双向 I/O 输出 Ο OD 开漏输出 Ρ 电源 G 地

表 1.1: 信号类型约定

1.3.3 数值表示

16 进制数表示为 'hxxx, 2 进制数表示为 'bxx, 其他数字为 10 进制数。

功能相同但标号有别的引脚(如 TS00,TS01,...)使用方括号加数字范围的形式简写(如 TS[15:0])。类似地,寄存器域也采用这种表示方式。

1.3.4 寄存器域

寄存器域以 [寄存器名].[域名] 的形式加以引用。如 ChipCtrl.dram_pd 指芯片配置寄存器 (ChipCtrl) 的 dram_pd 域。

第二章 引脚定义

龙芯 1C101 定义了有多种封装形式,其中 QFP80 为完全引出版,所有功能均引出。其它封装引出脚为 QFP80 的真子集,其定义与 QFP80 的同名引脚一致,因此本章只介绍 QFP80 封装时的引脚定义。

2.1 QFP80 **封装引脚**

表 2.1: QFP80 引脚定义

序号	名称	类型	描述
1	EJTAG_TCK/GPIO49	I	EJTAG 时钟
2	EJTAG_TRST	I	EJTAG 复位
3	EJTAG_TDI/GPI050	I	EJTAG 数据输入
4	EJTAG_TDO/GPI051	О	EJTAG 数据输出
5	EJTAG_TMS/GPI052	I	EJTAG 模式选择
6	SPI_CLK/GPI053	О	SPI 时钟
7	SPI_MISO/GPI054	I	SPI 数据输入
8	SPI_MOSI/GPI055	О	SPI 数据输出
9	SPI_CSN1/GPI056	О	SPI 片选 1
10	SPI_CSN2/GPI057	О	SPI 片选 2
11	SPI_CSN3/GPI058	О	SPI 片选 3
12	GPI059	I/O	通用输入输出
13	GPI060	I/O	通用输入输出
14	GND	G	地
15	VPWM_DP/GPI061	О	语音输出数据正端
16	VPWM_DN/GPI062	О	语音输出数据负端
17	GPI063	I/O	通用输入输出
18	VIO	P	IO 电源
19	DOTESTn	I	测试模式
20	RSTn	I	系统复位
21	CLK32IN	I	32.768KHz 晶体振荡器输入
22	CLK320UT	О	32.768KHz 晶体振荡器输出,可接晶振
23	GPI000	I/O	通用输入输出
24	GPI001	I/O	通用输入输出
25	PULSEO/GPI002	О	脉冲输出
26	PULSE1/GPI003	О	脉冲输出
27	IIC_SCL/GPI004	О	I2C 时钟
28	IIC_SDA/GPI005	I/O	I2C 数据
29	ADC_IO	I	ADC 通道 0/断电检测输入
30	ADC_I1	I	ADC 通道 1
31	UARTO_RX/GPIO06	I	串口 0 数据输入

序号	名称	类型	描述
32	UARTO_TX/GPIO07	О	串口 0 数据输出
33	UART1_RX/GPI008	I	串口 1 数据输入
34	UART1_TX/GPI009	О	串口 1 数据输出
35	UART2_RX/GPI010	О	串口 2 数据输入
36	UART2_TX/GPI011	О	串口 2 数据输出
37	BSO/GPIO12	I	启动配置 0
38	XIN	I	8MHz 晶体振荡器输入,可接晶振
39	XOUT	О	8MHz 晶体振荡器输出
40	BS1/GPI013	I	启动配置 1
41	ADC_I4/GPI014	A	ADC 通道 4
42	ADC_I5/GPI015	A	ADC 通道 5
43	ADC_I6/GPI016	A	ADC 通道 6
44	VRVDD	Р	VR 电源输入
45	VROUT	A	VR 电源输出,接 10nF 电容到地
46	ADC_I7/GPI017	A	ADC 通道 7
47	GND	G	地
48	TSCAP	A	触摸按键外置电容
49	VIO	Р	电源
50	TS00/GPI018	A	触摸按键 0
51	TS01/GPI019	A	触摸按键 1
52	TS02/GPI020	A	触摸按键 2
53	TS03/GPI021	A	触摸按键 3
54	TS04/GPI022	A	触摸按键 4
55	TS05/GPI023	A	触摸按键 5
56	TS06/GPI024	A	触摸按键 6
57	TS07/GPI025	A	触摸按键 7
58	TS08/GPI026	A	触摸按键 8
59	TS09/GPI027	A	触摸按键 9
60	TS10/GPI028	A	触摸按键 10
61	TS11/GPI029	A	触摸按键 11
62	TS12/GPI030	A	触摸按键 12
63	TS13/GPI031	A	触摸按键 13
64	TS14/GPI032	A	触摸按键 14
65	TS15/GPI033	A	触摸按键 15
66	GPI034	I/O	通用输入输出
67	GPI035	I/O	通用输入输出
68	GPI036	I/O	通用输入输出
69	GPI037	I/O	通用输入输出
70	GPI038	I/O	通用输入输出
71	GPI039	I/O	通用输入输出
72	GPIO40	I/O	通用输入输出
73	GPIO41	I/O	通用输入输出
74	GPI042	I/O	通用输入输出
75	GPI043	I/O	通用输入输出

序号	名称	类型	描述
76	FLASH_CLK/GPIO44	О	SPI Flash 时钟
77	FLASH_MOSI/GPI045	О	SPI Flash 数据输出
78	FLASH_MISO/GPIO46	О	SPI Flash 数据输入
79	FLASH_CSN/GPIO47	О	SPI Flash 片选
80	FLASH_CSB/GPI048	О	SPI Flash 第二片选

引脚的复用关系定义如下:

表 2.2: 引脚复用关系

GPIO	引脚	主功能	第一复用	第二复用
0	GPIO00	gpio[0]	i2c_scl	gpio[0]
1	GPIO01	gpio[1]	i2c_sda	gpio[1]
2	PULSE0	pulse0	-	gpio[2]
3	PULSE1	pulse1	-	gpio[3]
4	IIC_SCL	i2c_scl	-	i2c_scl
5	IIC_SDA	i2c_sda	-	i2c_sda
6	UART0_RX	uart0_rx	-	uart0_rx
7	UARTO_TX	uart0_tx	-	uart0_tx
8	UART1_RX	uart1_rx	-	uart1_rx
9	UART1_TX	uart1_tx	-	uart1_tx
10	UART2_RX	uart2_rx	-	gpio[10]
11	UART2_TX	uart2_tx	-	gpio[11]
12	*BS0	gpio[12]	-	gpio[12]
13	*BS1	gpio[13]	-	-
14	ADC_I4	gpio[14]	-	-
15	ADC_I5	gpio[15]	-	-
16	ADC_I6	gpio[16]	-	-
17	ADC_I7	gpio[17]	-	-
18	TS00	gpio[18]	i2c_scl	-
19	TS01	gpio[19]	i2c_sda	-
20	TS02	gpio[20]	spi_clk	flash_clk
21	TS03	gpio[21]	spi_miso	flash_miso
22	TS04	gpio[22]	spi_mosi	flash_mosi
23	TS05	gpio[23]	spi_csn	flash_csn[0]
24	TS06	gpio[24]	-	spi_csn[1]
25	*TS07	gpio[25]	-	gpio[18]
26	TS08	gpio[26]	-	gpio[19]
27	TS09	gpio[27]	-	-
28	TS10	gpio[28]	-	-
29	TS11	gpio[29]	-	-
30	TS12	gpio[30]	uart0_rx	-
31	TS13	gpio[31]	uart0_tx	-
32	TS14	gpio[32]	i2c_scl	gpio[20]
33	TS15	gpio[33]	i2c_sda	gpio[21]

GPIO	引脚	主功能	第一复用	第二复用
34	GPIO34	gpio[34]	uart0_rx	-
35	GPIO35	gpio[35]	uart0_tx	-
36	GPIO36	gpio[36]	uart1_rx	-
37	GPIO37	gpio[37]	uart1_tx	-
38	GPIO38	gpio[38]	uart2_rx	-
39	GPIO39	gpio[39]	uart2_tx	-
40	GPIO40	gpio[40]	-	-
41	GPIO41	gpio[41]	-	-
42	GPIO42	gpio[42]	-	-
43	GPIO43	gpio[43]	-	-
44	FLASH_CLK	flash_clk	pulse0	-
45	FLASH_MOSI	flash_mosi	pulse1	-
46	FLASH_MISO	flash_miso	-	-
47	FLASH_CSN	flash_csn	-	-
48	*FLASH_CSB	flash_sfccsn	-	-
49	EJTAG_TCK	ejtag_tck	-	-
50	EJTAG_TDI	ejtag_tdi	uart0_rx	-
51	*EJTAG_TDO	ejtag_tdo	uart0_tx	-
52	EJTAG_TMS	ejtag_tms	-	-
53	SPI_CLK	spi_clk	-	gpio[22]
54	SPI_MISO	spi_miso	-	gpio[23]
55	SPI_MOSI	spi_mosi	-	gpio[24]
56	SPI_CSN1	spi_csn[1]	-	gpio[25]
57	SPI_CSN2	spi_csn[2]	-	-
58	SPI_CSN3	spi_csn[3]	-	-
59	GPIO59	gpio[59]	uart1_rx	vpwm_dp
60	GPIO60	gpio[60]	uart1_tx	vpwm_dn
61	VPWM_DP	vpwm_dp	uart2_rx	-
62	VPWM_DN	vpwm_dn	uart2_tx	-
63	GPIO63	gpio[63]	-	-

其中带*号的表示上电配置引脚。

2.2 上电配置

芯片启动时会读取引脚上的配置电平,从而决定启动模式。相关配置说明见表2.3。 这些配置引脚应根据需要进行上下拉。

表 2.3: 上电配置引脚

引脚	说明
BS0	新封装启动模式选择,上拉为 SPI 启动 (若 BS1 下拉则此脚可不拉)
BS1	封装兼容选择,上拉为 1C101 封装,下拉兼容 1C100
TS07	老封装启动模式选择,上拉为 SPI 启动(仅 BS1 下拉时有效,若 BS1 上拉则此脚可不拉)

引脚	说明
FLASH_CSB	新封装安装模式,上拉为 Flash_CSB 启动(若 BS1 下拉则此脚可不拉)
EJTAG_TDO	新封装 EJTAG 引脚复用,上拉可复用为 GPIO,下拉只能作为 EJTAG

注: 若 EJTAG 被锁定,则 SPI 启动选项自动失效,只能从片内 Flash 启动。

第三章 功能描述

3.1 时钟结构

龙芯 1C101 包含以下时钟

农 5.1. 内 种足义				
时钟名	频率	说明		
clk_int32k	$12.8 \sim 58 \mathrm{KHz}$	片内振荡器,是外部时钟的备份		
clk_ext32k	32.768KHz	石英振荡器		
clk_32k		片内 32K 工作时钟		
clk_int32m	$25.6 \sim 33.6 \text{MHz}$	片内振荡器,可用于语音输出		
clk_ext8m	8MHz	石英振荡器		
clk_8m		片内 8M 工作时钟		
ejtag_tck	8MHz	EJTAG 时钟		

表 3.1: 时钟定义

启动和复位时默认使用片内时钟。时钟选择模块持续检测片外时钟,并向软件反馈 状态。当片外时钟正常时软件可以发起切换操作。切换到外部时钟后,如果片外时钟停止,将自动切回内部时钟并产生中断。

时钟结构如图3.1所示。

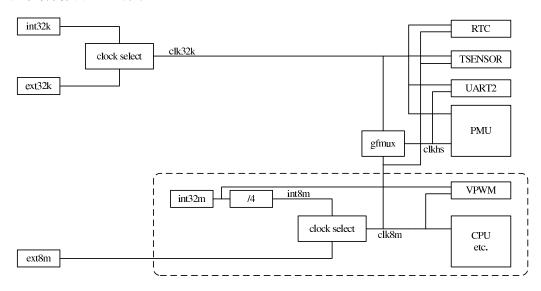


图 3.1: 时钟结构图

顶层 RCG 负责生成 32K 时钟,8M 时钟由 CPU 域内部生成并送出作为总线时钟。根据 CPU 域的电源状态,32K 和 8M 选出 clkhs,用于电源管理。在 CPU 域掉电时为 32K,上电后为 8M。

片内时钟的频率精度不高,对于精度要求高的应用建议连接片外时钟晶体。芯片中有逻辑可测试 32K 时钟与 8M 时钟的关系,在只用一个晶体时提供校准能力,参见TsCtrl.test_en。芯片出厂时在常温下测试了内部 8M 时钟的频率,并写入 0xbf0201b0指向的数据字中,单位为 KHz。

3.2 上电复位

芯片内部集成上电复位功能,上电期间复位引脚 RSTN 将驱动为低。外部下拉 RSTN 引脚也可以将芯片复位。RSTN 引脚内置约 $400K\Omega$ 上拉电阻,建议外部增加 1nF 对地电容。

芯片内置复位来源寄存器 (CmdSts.RstSrc), 软件可以根据其值判定是一次上电复位或外部复位 (2'b00), 还是一次看门狗复位 (2'b01 / 2'b10), 或是休眠唤醒 (2'b11)。

3.3 看门狗

片内集成不可关闭的看门狗,初始化为 4 秒复位。引导代码可以将其设置其它值。 看门狗配置带校验,如果配置出错将立即复位。

在调试模式下(EJTAG_TRST 为高,且 CPU 被 EJTAG 中断),看门狗计数器将暂停计数。EJTAG TRST 引脚内置约 $50K\Omega$ 弱下拉,可以悬空。

3.4 输入保持功能

低功耗应用场合要求所有数字引脚的电平处于确定状态。为简化软硬件实现,龙芯 1C101 支持输入保持功能。该功能打开后会在引脚处引入正反馈,如果采样到的电平为高,则开启上拉;反之,如果采样到的电平为低,则开启下拉。上下拉电阻约为 $50K\Omega$ 。

输入保持功能有一个全局使能位 (ChipCtrl.ihold_en),和每个 IO 的独立控制位 (!GPIO_EN[i] & GPIO_O[i])。需注意的是,如果一个输入引脚未处于 GPIO 状态时,同样可以打开输入保持功能。打开输入保持功能的输入引脚,外部驱动应当小于 $5K\Omega$,以便正确改变状态。

3.5 安全特性

龙芯 1C101 的安全包括两个层次:

- 1. 运行安全: CPU 只能执行内部代码, 外界无法控制其运行
- 2. 代码安全: 关键代码无法读出, 存储时随机加密

前者基于 Flash 的 OTP 功能实现。Flash 初始化完成后读出配置字,生成 EJTAG 锁定和 OTP 锁定两个信号。EJTAG 锁定有效时,外部调试主机将无法使芯片进入调试模式,并且 SPI 启动也将被禁用。后者在 Flash 内部实现,保护区域的代码只允许指令读,存取时自动加解密。

3.6 安装模式

安装模式用于简化出厂时的固件烧写。在该模式下,芯片会从安装卡上的 SPI Flash 启动,运行其中的安装程序。安装程序可以烧写片内 Flash 以及主板上的 SPI Flash。应注意的是在烧写 SPI Flash 时,软件应当在片内 RAM 中运行。

电路设计方面,主板上 FLASH_CSB 应当加以弱下拉(比如 $50K\Omega$),并与时钟、数据以及电源地拉出到专用的引出点,以便与安装卡对接。安装卡上将 FLASH_CSB 上拉(比如 $5K\Omega$),使得插卡后芯片自动切换成安装模式。如果主板上不用 SPI Flash,而是希望将 FLASH* 接口复用为 GPIO,建议只复用为 GPIO 输出。

第四章 电气特性

4.1 电源

4.1.1 推荐工作条件

表 4.1: 推荐工作条件

电源	描述	Min	Тур	Max
VIO	IO 电源	2.97	3.3	3.63
VRVDD	VR 电源	2.97	3.3	3.63

4.1.2 绝对最大额定值

表 4.2: 绝对最大额定值

电源	描述	Min	Max	单位
VIO	IO 电源	-0.3	4.5	V
VRVDD	VR 电源	-0.3	4.5	V

4.2 SPI Flash 接口特性

T为 SCK 时钟周期。

表 4.3: SPI Flash 特性

参数	描述	最小	典型	最大	单位
Tckh	SCK 时钟高电平时间	0.5T-1	-	-	ns
Tckl	SCK 时钟低电平时间	0.5T-1	-	-	ns
Tval	SCK 下降沿到数据输出的延迟	6	-	90	ns
Tsu	数据输入建立时间	83	-	-	ns
Th	数据输入保持时间	1	-	-	ns

4.3 I2C 接口时序

波形如图4.1所示。

表 4.4: I2C 特性

参数	描述	最小	典型	最大	单位
Tckh	SCL 时钟高电平时间	4	-	-	us
Tckl	SCL 时钟低电平时间	5	-	-	us
Tval	SCL 下降沿到数据输出的延迟	5	-	-	us
Tsu	数据建立时间(SDA 变化到 SCL 上	0	-	-	us
	升)				

参数	描述	最小	典型	最大	单位
Th	数据保持时间(SCL 下降到 SDA 变	0	-	-	us
	(化)				

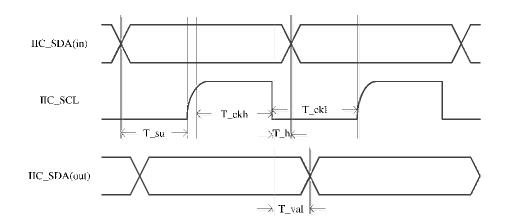


图 4.1: I2C 接口时序

4.4 ADC **特性**

表 4.5: ADC 特性

参数	描述	最小	典型	最大	单位
INL	Integral Non-Linearity		±3	±6	LSB
DNL	Differential Non-Linearity		±2	±4	LSB
SNR	Signal-To-Noise Rate		56		dB
SNDR	Signal-To-Noise and Distortion Rate		54		dB
Resolution	分辨率		12		bit
ENOB	有效精度		9.5		bit

第五章 热特性

5.1 热参数

表 5.1: 龙芯 1C101 热特性参数和极限值

K out / B B T of the K E S X III K K E				
参数	值			
最大电流	5mA			
最高环境温度	85°C			
最低环境温度	-40°C			
最高存储温度	125°C			
最低存储温度	-55°C			

5.2 焊接说明

龙芯 1C101 采用无铅封装,建议回流焊接参数如表5.2所示

表 5.2: 回流焊接参数

Profil	Pb-Free Assembly	
Average ramp-up	3°C/second max.	
Temperature Min (Tsmin)		150°C
Preheat	Temperature Max (Tsmax)	200°C
	Time (Tsmin to Tsmax)(ts)	60-180 seconds
Time maintained above	Temperature (TL)	217°C
	Time (tL)	60-150 seconds
Peak Tem	perature (Tp)	245°C
Time within 5°Cof act	20-40 seconds	
Rampe	6°C/second max.	
Time 25°Cto	Peak Temperature	8 minutes max.

第六章 引脚排列和封装

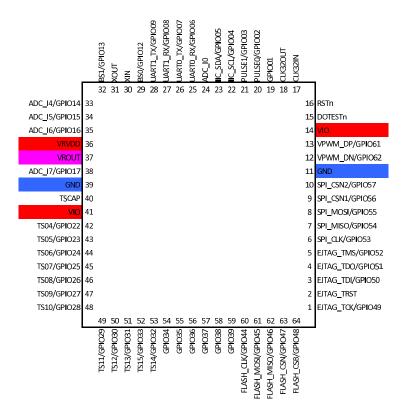
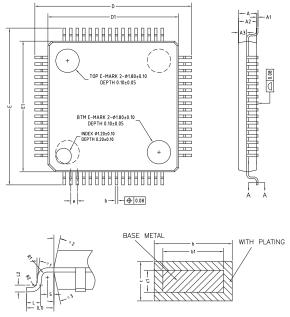



图 6.1: QFP64 封装顶视图

第七章 封装机械尺寸

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
А	_	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	1	0.27
b1	0.17	0.20	0.23
С	0.13	-	0.18
c1	0.117	0.127	0.137
D	11.95	12.00	12.05
D1	9.90	10.00	10.10
E	11.95	12.00	12.05
E1	9.90	10.00	10.10
е	0.40	0.50	0.60
Н	11.09	11.13	11.17
L	0.53	ı	0.70
L L1		1.00REF	
R1		0.15REF	
R2		0.13REF	
Θ	0°	3.5°	7°
Θ1	11°	12°	13°
Θ2	11°	12°	13°

图 7.1: 封装机械尺寸图