
SeisIO Documentation
Release 0.1.2 rc

Joshua Jones

Mar 22, 2019

INTRODUCTION

1 Intro 3
1.1 Introduction . 3
1.2 Working with Data . 3
1.3 Data Types . 7

2 Files 11
2.1 File Formats . 11

3 Web 15
3.1 Web Requests . 15
3.2 SeedLink . 18

4 Processing 21
4.1 Data Processing . 21

5 Appendices 23
5.1 Utility Functions . 23
5.2 Structure and Field Descriptions . 25
5.3 SeisIO File Format . 26
5.4 Data Requests Syntax . 32
5.5 SeisIO Standard Keywords . 35
5.6 Examples . 36

Index 39

i

ii

SeisIO Documentation, Release 0.1.2 rc

SeisIO is a collection of utilities for reading and downloading geophysical timeseries data.

INTRODUCTION 1

SeisIO Documentation, Release 0.1.2 rc

2 INTRODUCTION

CHAPTER

ONE

INTRO

1.1 Introduction

SeisIO is a framework for working with geophysical time series data. The project is home to an expanding
set of web clients, file format readers, and analysis utilities.

1.1.1 Overview

SeisIO stores data in minimalist data types that track record times and other necessary quantities for further
processing. New data are easily merged into existing structures with basic commands like +. Unwanted
channels can be removed just as easily. Data can be saved to a native SeisIO format or written to SAC.

1.1.2 Installation

From the Julia prompt: press] to enter the Pkg environment, then type

add https://github.com/jpjones76/SeisIO.jl; build; precompile

Dependencies should be installed automatically. To run tests that verify functionality works correctly, type

test SeisIO

in the Pkg environment. Allow 10-20 minutes for all tests to complete.

To get started, exit the Pkg environment by pressing Control + C, then type

using SeisIO

1.1.3 Updating

From the Julia prompt: press] to enter the Pkg environment, then type update. You may need to restart
the Julia REPL afterward to use the updated version.

1.2 Working with Data

SeisIO is designed around the principle of easy, fluid, and fast data access. At the most basic level, SeisIO
uses an array-like custom structure called a SeisChannel for single-channel data; SeisData structures store
multichannel data and can be created by combining SeisChannel objects.

3

SeisIO Documentation, Release 0.1.2 rc

1.2.1 First Steps

Create a new, empty SeisChannel object with

Ch = SeisChannel()

The meanings of the field names are explained here<dkw>. You can edit field values manually, e.g.,

Ch.loc = [-90.0, 0.0, 9300.0, 0.0, 0.0]
Ch.name = "South pole"

or you can set them with keywords at creation:

Ch = SeisChannel(name="MANOWAR JAJAJA")

SeisData structures are collections of channel data. They can be created with the SeisData() command,
which can optionally create any number of empty channels at a time, e.g.,

S = SeisData(1)

They can be explored similarly:

S.name[1] = "South pole"
S.loc[1] = [-90.0, 0.0, 9300.0, 0.0, 0.0]

A collection of channels becomes a SeisData structure:

S = SeisData(SeisChannel(), SeisChannel())

You can push channels onto existing SeisData structures, like adding one key to a dictionary:

push!(S, Ch)

Note that this copies Ch to a new channel in S – S[3] is not a view into C. This is deliberate, as otherwise the
workspace quickly becomes a mess of redundant channels. Clean up with Ch = [] to free memory before
moving on.

1.2.2 Operations on SeisData structures

We’re now ready for a short tutorial of what we can do with data structures. In the commands below, as in
most of this documentation, Ch is a SeisChannel object and S is a SeisData object.

Adding channels to a SeisData structure

You’ve already seen one way to add a channel to SeisData: push!(S, SeisChannel()) adds an empty channel.
Here are others:

append!(S, SeisData(n))

Adds n channels to the end of S by creating a new n-channel SeisData and appending it, similar to adding
two dictionaries together.

These methods are aliased to the addition operator:

4 Chapter 1. Intro

SeisIO Documentation, Release 0.1.2 rc

S += SeisChannel() # equivalent to push!(S, SeisChannel())
S += randseisdata(3) # adds a random 3-element SeisData structure to S in
→˓place
S = SeisData(randseisdata(5), SeisChannel(),

SeisChannel(id="UW.SEP..EHZ", name="Darth Exploded",
loc=[46.1967, -122.1875, 1440, 0.0, 0.0]))

Most web request functions can append to an existing SeisData object by placing an exclamation mark after
the function call. You can see how this works by running the examples<webex>.

Search, Sort, and Prune

The easiest way to find channels of interest in a data structure is to use findid, but you can obtain an array of
partial matches with findchan:

S = SeisData(randseisdata(5), SeisChannel(),
SeisChannel(id="UW.SEP..EHZ", name="Darth Exploded",
loc=[46.1967, -122.1875, 1440, 0.0, 0.0], x=rand(1024)))

findid(S, "UW.SEP..EHZ") # 7
findchan(S, "EHZ") # [7], maybe others depending on randseisdata

You can sort by channel ID with the sort command.

Several functions exist to prune empty and unwanted channels from SeisData structures.

delete!(S, 1:2) # Delete first two channels of S
S -= 3 # Delete third channel of S

Extract S[1] as a SeisChannel, removing it from S
C = pull(S, 1)

Delete all channels whose S.x is empty
prune!(S)

Delete channels containing ".SEP."
delete!(S, ".SEP.", exact=false)

In the last example, specifying exact=false means that any channel whose ID partly matches the string
“.SEP.” gets deleted; by default, passing a string to delete!(S, str) only matches channels where str is the
exact ID. This is an efficient way to remove unresponsive subnets and unwanted channel types, but beware
of clumsy over-matching.

Merge

SeisData structures can be merged using the function merge!, but this is much more complicated than
addition.

merge!(S)

• Does nothing to channels with unique IDs.

• For sets of channels in S that share an ID. . . + Adjusts all matching channels to the :gain, :fs, :loc,
and :resp fields of the channel the latest data + Time-sorts data from all matching channels by S.t +

1.2. Working with Data 5

SeisIO Documentation, Release 0.1.2 rc

Averages data points that occur simultaneously in multiple members of the set

• throws an error if joining data that have the same ID and different units.

1.2.3 Keeping Track

Because tracking arbitrary operations can be difficult, several functions have been written to keep track of
data and operations in a semi-automated way.

Taking Notes

Most functions that add or process data note this in the appropriate channel’s :notes field. However, you can
also make your own notes with the note! command:

note!(S, i, str)

Append str with a timestamp to the :notes field of channel number i of S.

note!(S, id, str)

As above for the first channel in S whose id is an exact match to id.

note!(S, str)

if str* mentions a channel name or ID, only the corresponding channel(s) in **S is annotated; otherwise,
all channels are annotated.

Clear all notes from channel i of S.

clear_notes!(S, id)

Clear all notes from the first channel in S whose id field exactly matches id.

clear_notes!(S)

Clear all notes from every channel in S.

Keeping Track

A number of auxiliary functions exist to keep track of channels:

findchan(id::String, S::SeisData)

findchan(S::SeisData, id::String)

Get all channel indices i in S with id ∈ S.id[i]. Can do partial id matches, e.g. findchan(S, “UW.”) returns
indices to all channels whose IDs begin with “UW.”.

findid(S::SeisData, id)

Return the index of the first channel in S where id = id.

findid(S::SeisData, Ch::SeisChannel)

Equivalent to findfirst(S.id.==Ch.id).

namestrip!(S[, convention])

6 Chapter 1. Intro

SeisIO Documentation, Release 0.1.2 rc

Remove bad characters from the :name fields of S. Specify convention as a string (default is “File”):

Convention Characters Removed:sup:(a)
“File” "$*/:<>?@\^|~DEL
“HTML” "&';<>©DEL
“Julia” $\DEL
“Markdown” !#()*+-.[\]_`{}
“SEED” .DEL
“Strict” !"#$%&'()*+,-./:;<=>?@[\]^`{|}~DEL

(a) DEL is \x7f (ASCII/Unicode U+007f).

timestamp()

Return current UTC time formatted yyyy-mm-ddTHH:MM:SS.𝜇𝜇𝜇.

track_off!(S)

Turn off tracking in S and return a boolean vector of which channels were added or altered significantly.

track_on!(S)

Begin tracking changes in S. Tracks changes to :id, channel additions, and changes to data vector sizes in
S.x.

Does not track data processing operations on any channel i unless length(S.x[i]) changes for channel i (e.g.
filtering is not tracked).

Warning: If you have or suspect gapped data in any channel, calling ungap! while tracking is active will
flag a channel as changed.

Source Logging

SeisIO functions record the last source used to populate each channel in the :src field. Typically this is a
string.

When a data source is added to a channel, including the first time data are added, this is recorded in :notes
with the syntax (timestamp) +src: (function) (src).

1.3 Data Types

• SeisChannel: single-channel univariate data

• SeisData: multi-channel univariate data

• SeisHdr: seismic event header

• SeisEvent: composite type for events with header and trace data

Data types in SeisIO can be manipulated using standard Julia commands.

1.3. Data Types 7

SeisIO Documentation, Release 0.1.2 rc

1.3.1 Initialization

SeisChannel

SeisChannel()

Initialize an empty SeisChannel structure.

SeisChannel(; [KWs])

Set fields at creation by specifying fieldnames as keywords, e.g. SeisChannel(fs=100.0) creates a new
SeisChannel structure with fs = 100.0 Hz.

SeisData

SeisData()

Initialize an empty SeisData structure. Fields cannot be set at creation.

SeisData(n)

Initialize an empty SeisData structure with S.n channel containers.

SeisData(S::SeisData, Ev::SeisEvent, C1::SeisChannel, C2::SeisChannel)

Create a SeisData structure by copying S and appending Ev.data, C1, and C2. This syntax can be used to
form a new SeisData structure from arbitrary combinations of SeisData and SeisChannel objects.

SeisHdr, SeisEvent

SeisHdr()

Create an empty SeisHdr structure.

SeisHdr(; KWs)

Set fields at creation by specifying fieldnames as keywords.

SeisEvent()

Initialize an empty SeisEvent structure with an empty SeisHdr in .hdr and an empty SeisData in .data.

Example

Create a new SeisData structure with three channels

C1 = SeisChannel(name="BRASIL", id="IU.SAML.00.BHZ")
C2 = SeisChannel(name="UKRAINE", id="IU.KIEV.00.BHE")
S = SeisData(C1, C2, SeisChannel(name="CHICAGO"))

SeisData Indexing

Individual channels in a SeisData structure can be accessed by channel index. Indexing a single channel,
e.g. C=S[3], outputs a SeisChannel; indexing several outputs a new SeisData structure.

The same syntax can be used to ovewrwrite data by channel (or channel range). For example, S[2] = T,
where T is a SeisChannel instance, replaces the second channel of S with T.

8 Chapter 1. Intro

SeisIO Documentation, Release 0.1.2 rc

Multiple channels in a SeisData structure S can be overwritten with another SeisData structure T using
setindex!(S, T, I); the last input is the range of indices in S to overwrite (which must satisfy length(I) ==
T.n).

Julia is a “pass by reference” language. The precaution here is best illustrated by example: if we assign T
= S[2], subsequent changes to T modify S[2] in place.

1.3.2 Commands by Category

SeisIO extends a number of built-in Julia methods to work with its custom data types. In addition, many
custom functions exist to simplify processing.

Append, Merge

append!(S::SeisData, U::SeisData)

Append all channels in U to S. No checks against redundancy are performed; can result in duplicate channels
(fix with merge!(S)).

merge!(S::SeisData, U::SeisData)

S += U

Merge U into S. Also works if U is a SeisChannel structure. Merges are based on matching channel IDs;
channels in U without IDs in S are simply assigned to new channels. merge! and += work identically for
SeisData and SeisChannel instances.

Data can be merged directly from the output of any SeisIO command that outputs a compatible structure;
for example, S += readsac(sacfile.sac) merges data from sacfile.sac into S.

For two channels i, j with identical ids, pairs of non-NaN data xi, xj with overlapping time stamps (i.e. | ti -
tj | < 0.5/fs) are averaged.

merge!(S::SeisData)

Applying merge! to a single SeisData structure merges pairs of channels with identical IDs.

Delete, Extract

delete!(S::SeisData, j)

deleteat!(S::SeisData, j)

S-=j

Delete channel number(s) j from S. j can be an Int, UnitRange, Array{Int,1}, a String, or a Regex. In the
last two cases, any channel with an id that matches j will be deleted; for example, S-=”CC.VALT” deletes
all channels whose IDs match “CC.VALT”.

T = pull(S, i)

If i is a string, extract the first channel from S with id=i and return it as a new SeisData structure T. The
corresponding channel in S is deleted. If i is an integer, pull operates on the corresponding channel number.

purge!(S)

1.3. Data Types 9

SeisIO Documentation, Release 0.1.2 rc

Remove all empty channels from S. Empty channels are defined as the set of all channel indices i s.t.
isempty(S.x[i]) = true.

Read, Write

A = rseis(fname::String)

Read SeisIO data from fname into an array of SeisIO structures.

wsac(S)

Write SAC data from SeisData structure S to SAC files with auto-generated names. SAC data can only be
saved to single precision.

Specify ts=true to write time stamps. Time stamped SAC files created by SeisIO are treated by the SAC
program itself as unevenly spaced, generic x-y data (LEVEN=0, IFTYPE=4). Third-party readers might
interpret timestamped files less predictably: depending on the reader, timestamped data might be loaded as
the real part of a complex time series, with time stamps as the imaginary part . . . or the other way around
. . . or they might not load at all.

wseis(fname::String, S)

Write SeisIO data from S to fname. Supports splat expansion for writing multiple objects, e.g. wseis(fname,
S, T, U) writes S, T, and U to fname.

To write arrays of SeisIO objects to file, use “splat” notation: for example, for an array A of type Ar-
ray{SeisEvent,1}, use syntax wseis(fname, A. . .).

Search, Sort

sort!(S::SeisData, rev=false)

In-place sort by S.id. Specify rev=true to reverse the sort order.

i = findid(S, C)

Return the index of the first channel in S with id matching C. If C is a string, findid is equivalent to
findfirst(S.id.==C); if C is a SeisChannel, findid is equivalent to findfirst(S.id.==C.id).

10 Chapter 1. Intro

CHAPTER

TWO

FILES

2.1 File Formats

Current format support: (e = endianness; B = big, l = little, * = either)

Format e Command Creates/modifies
miniSEED B readmseed! existing SeisData

B readmseed new SeisData
SAC * readsac new SeisData

* sachdr dumps header to stdout
l writesac sac files on disk

SEG Y B readsegy (a) new SeisData
B segyhdr dumps header to stdout

UW B readuw new SeisEvent
B uwpf! existing SeisEvent
B uwpf new SeisHdr
B uwdf new SeisData

win32 B readwin32! existing SeisData
B readwin32 new SeisData

(a) Use keyword PASSCAL=true for PASSCAL SEG Y.

2.1.1 Format Descriptions

miniSEED: SEED stands for Standard for the Exchange of Earthquake Data; the data format is used by
FDSN as a universal omnibus-type standard for seismic data. miniSEED is a data-only format with a limited
number of blockette types.1

SAC: widely-used data format developed for the Seismic Analysis Code interpreter, supported in virtually
every programming language.234

SEG Y: standard energy industry seismic data format, developed and maintained by the Society for Explo-
ration Geophysicists(a)5 A single-channel SEG Y variant format, referred to here as “PASSCAL SEG Y”

1 FDSN SEED manual: https://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf
2 SAC data format intro: https://ds.iris.edu/ds/nodes/dmc/kb/questions/2/sac-file-format/
3 SAC file format: https://ds.iris.edu/files/sac-manual/manual/file_format.html
4 SAC software homepage: https://seiscode.iris.washington.edu/projects/sac
5 SEG Y Wikipedia page: http://wiki.seg.org/wiki/SEG_Y

11

https://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf
https://ds.iris.edu/ds/nodes/dmc/kb/questions/2/sac-file-format/
https://ds.iris.edu/files/sac-manual/manual/file_format.html
https://seiscode.iris.washington.edu/projects/sac
http://wiki.seg.org/wiki/SEG_Y

SeisIO Documentation, Release 0.1.2 rc

was developed by PASSCAL/New Mexico Tech and is used with PASSCAL field equipment.6

UW: the University of Washington data format was designed for event archival. A UW event is described
by a pickfile and a corresponding data file, whose names are identical except for the last character, e.g.
99062109485o, 99062109485W.(b)

Win32 : data format developed by the NIED (National Research Institute for Earth Science and Disaster Pre-
vention), Japan. Data are typically divided into files that contain a minute of continuous data from channels
on a single network or subnet. Data within each file are stored by channel in 1s segments as variable-
precision integers. Channel information for each stream is retrieved from an external channel information
file.(c)78

Usage Warnings
(a) SEG Y v ≤ rev 1 is supported. Trace header field definitions in SEG Y are not ridigly controlled by
any central authority, so some industry SEG Y files may be unreadable. Please address questions about
unreadable SEG Y files to their creators.
(b) UW data format has no online documentation. Please contact the SeisIO creators or the Pacific Northwest
Seismic Network (University of Washington, United States) if additional help is needed to read these files.
(c) Win32 channel information files are not strictly controlled by a central authority; inconsistencies in
channel parameters (e.g. gains) are known to exist. Please remember that redistribution of Win32 files is
strictly prohibited by the NIED (our travis-ci tests use an encrypted tarball).

External References

2.1.2 File I/O Functions

readmseed(fname)

readmseed!(S, fname)

Read miniSEED data file fname into a new or existing SeisData structure.

readsac(fname[, full=false::Bool])
rsac(fname[, full=false::Bool])
Read SAC data file fname into a new SeisData structure. Specify keyword full=true to save all SAC
header values in field :misc.

readsegy(fname[, passcal=true::Bool])
Read SEG Y data file fname into a new SeisData structure. Use keyword passcal=true for PASSCAL-
modified SEG Y.

readuw(fname)

Read UW data file into new SeisData structure. fname can be a pick file (ending in [a-z]), a data file (ending
in W), or a file root (numeric UW event ID).

readwin32(fstr, cf)
6 PASSCAL SEG Y trace files: https://www.passcal.nmt.edu/content/seg-y-what-it-is
7 How to use Hi-net data: http://www.hinet.bosai.go.jp/about_data/?LANG=en
8 WIN data format (in Japanese): http://eoc.eri.u-tokyo.ac.jp/WIN/Eindex.html

12 Chapter 2. Files

https://www.passcal.nmt.edu/content/seg-y-what-it-is
http://www.hinet.bosai.go.jp/about_data/?LANG=en
http://eoc.eri.u-tokyo.ac.jp/WIN/Eindex.html

SeisIO Documentation, Release 0.1.2 rc

Read win32 data from files matching pattern fstr into a new SeisData structure using channel information
file cf. fstr can be a path with wild card filenames, but cannot use wild card directories.

..function:: rlennasc(fname)

Read Lennartz-formatted ASCII file into a new SeisData structure.

rseis(fname)

Read SeisIO native format data into an array of SeisIO structures.

sachdr(fname)

Print headers from SAC file to stdout.

segyhdr(fname[, PASSCAL=true::Bool])
Print headers from SEG Y file to stdout. Specify passcal=true for PASSCAL SEG Y.

uwdf(dfname)

Parse UW event data file dfname into a new SeisEvent structure.

uwpf!(evt, pfname)

Parse UW event pick file into SeisEvent structure.

uwpf(pfname)

Parse UW event pick file pfname into a new SeisEvent structure.

writesac(S[, ts=true])
Write SAC data to SAC files with auto-generated names. Specify ts=true to write time stamps; this will flag
the file as generic x-y data in the SAC interpreter.

wseis(fname, S)

wseis(fname, S, T, U...)

Write SeisIO data to fname. Multiple objects can be written at once.

2.1. File Formats 13

SeisIO Documentation, Release 0.1.2 rc

14 Chapter 2. Files

CHAPTER

THREE

WEB

3.1 Web Requests

Data requests use get_data! as a wrapper to either FDSN or IRIS data services; for live streaming, see
SeedLink.

get_data!(S, method, channels; KWs)

S = get_data(method, channels; KWs)

Retrieve time-series data from a web archive to SeisData structure S.

method
“IRIS”: IRISWS.
“FDSN”: FDSNWS dataselect. Change FDSN servers with keyword --src using the server list (also
available by typing ?seis_www).

channels
Channels to retrieve; can be passed as a string, string array, or parameter file. Type ?chanspec at the
Julia prompt for more info.

KWs
Keyword arguments; see also SeisIO standard KWs or type ?SeisIO.KW.
Standard keywords: fmt, nd, opts, rad, reg, si, to, v, w, y
Other keywords:
--s: Start time
--t: Termination (end) time

3.1.1 Examples

1. get_data!(S, "FDSN", "UW.SEP..EHZ,UW.SHW..EHZ,UW.HSR..EHZ", "IRIS",
t=(-600)): using FDSNWS, get the last 10 minutes of data from three short-period vertical-
component channels at Mt. St. Helens, USA.

15

SeisIO Documentation, Release 0.1.2 rc

2. get_data!(S, "IRIS", "CC.PALM..EHN", "IRIS", t=(-120), f="sacbl"):
using IRISWS, fetch the last two minutes of data from component EHN, station PALM (Palmer Lift
(Mt. Hood), OR, USA,), network CC (USGS Cascade Volcano Observatory, Vancouver, WA, USA),
in bigendian SAC format, and merge into SeisData structure S.

3. get_data!(S, "FDSN", "CC.TIMB..EHZ", "IRIS", t=(-600), w=true): using
FDSNWS, get the last 10 minutes of data from channel EHZ, station TIMB (Timberline Lodge, OR,
USA), save the data directly to disk, and add it to SeisData structure S.

4. S = get_data("FDSN", "HV.MOKD..HHZ", "IRIS", s="2012-01-01T00:00:00",
t=(-3600)): using FDSNWS, fill a new SeisData structure S with an hour of data ending at
2012-01-01, 00:00:00 UTC, from HV.MOKD..HHZ (USGS Hawai’i Volcano Observatory).

3.1.2 FDSN Queries

The International Federation of Digital Seismograph Networks (FDSN) is a global organization that sup-
ports seismology research. The FDSN web protocol offers near-real-time access to data from thousands of
instruments across the world.

FDSN queries in SeisIO are highly customizable; see data keywords list and channel id syntax.

Data Query

get_data!(S, "FDSN", channels; KWs)

S = get_data("FDSN", channels; KWs)

FDSN data query with get_data! wrapper.

Shared keywords: fmt, nd, opts, rad, reg, s, si, t, to, v, w, y
Other keywords:
--s: Start time
--t: Termination (end) time
xml_file: Name of XML file to save station metadata

Station Query

FDSNsta!(S, chans, KW)

S = FDSNsta(chans, KW)

Fill channels chans of SeisData structure S with information retrieved from remote station XML files by
web query.

Shared keywords: src, to, v
Other keywords:
--s: Start time
--t: Termination (end) time

16 Chapter 3. Web

http://www.fdsn.org/

SeisIO Documentation, Release 0.1.2 rc

Event Header Query

H = FDSNevq(ot)

Shared keywords: evw, rad, reg, mag, nev, src, to, v, w

Multi-server query for the event(s) with origin time(s) closest to ot. Returns a SeisHdr.

Notes:

1. Specify ot as a string formatted YYYY-MM-DDThh:mm:ss in UTC (e.g. “2001-02-08T18:54:32”).
Returns a SeisHdr array.

2. Incomplete string queries are read to the nearest fully-specified time constraint; thus,
FDSNevq(“2001-02-08”) returns the nearest event to 2001-02-08T00:00:00.

3. If no event is found in the specified search window, FDSNevq exits with an error.

Shared keywords: evw, reg, mag, nev, src, to, w

Event Header and Data Query

Ev = FDSNevt(ot::String, chans::String)

Get trace data for the event closest to origin time ot on channels chans. Returns a SeisEvent.

Shared keywords: fmt, mag, nd, opts, pha, rad, reg, src, to, v, w
Other keywords:
--len: desired record length in minutes.

3.1.3 IRIS Queries

Incorporated Research Institutions for Seismology (IRIS) is a consortium of universities dedicated to the
operation of science facilities for the acquisition, management, and distribution of seismological data.

Data Query Features

• Stage zero gains are removed from trace data; all IRIS data will appear to have a gain of 1.0.

• IRISWS disallows wildcards in channel IDs.

• Channel spec must include the net, sta, cha fields; thus, CHA = “CC.VALT..BHZ” is OK; CHA =
“CC.VALT” is not.

Phase Onset Query

Command-line interface to IRIS online travel time calculator, which calls TauP [1-2]. Returns a matrix of
strings.

Specify ∆ in decimal degrees, z in km with + = down.

3.1. Web Requests 17

http://www.iris.edu/

SeisIO Documentation, Release 0.1.2 rc

Shared keywords keywords: pha, to, v
Other keywords:
-model: velocity model (defaults to “iasp91”)

References

• Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time
and ray-path utilities, SRL 70(2), 154-160.

• TauP manual: http://www.seis.sc.edu/downloads/TauP/taup.pdf

3.2 SeedLink

3.2.1 SeedLink Client

SeedLink is a TCP/IP-based data transmission protocol that allows near-real-time access to data from thou-
sands of geophysical monitoring instruments. See data keywords list and channel id syntax for options.

SeedLink!(S, chans, KWs)

SeedLink!(S, chans, patts, KWs)

S = SeedLink(chans, KWs)

Standard keywords: fmt, opts, q, si, to, v, w, y
SL keywords: gap, kai, mode, port, refresh, safety, x_on_err
Other keywords: u specifies the URL without “http://”

Initiate a SeedLink session in DATA mode to feed data from channels chanswith selection patterns patts
to SeisData structure S. A handle to a TCP connection is appended to S.c.Data are periodically parsed
until the connection is closed. One SeisData object can support multiple connections, provided that each
connection’s streams feed unique channels.

Argument Syntax

chans

Channel specification can use any of the following options:

1. A comma-separated String where each pattern follows the syntax NET.STA.LOC.CHA.DFLAG, e.g.
UW.TDH..EHZ.D. Use “?” to match any single character.

2. An Array{String,1} with one pattern per entry, following the above syntax.

3. The name of a configuration text file, with one channel pattern per line; see Channel Configuration
File syntax.

patts Data selection patterns. See SeedLink documentation; syntax is identical.

18 Chapter 3. Web

http://www.seis.sc.edu/downloads/TauP/taup.pdf
https://www.seiscomp3.org/wiki/doc/applications/seedlink
http://

SeisIO Documentation, Release 0.1.2 rc

Special Rules

1. SeedLink follows unusual rules for wild cards in sta and patts:

a. * is not a valid SeedLink wild card.

b. The LOC and CHA fields can be left blank in sta to select all locations and channels.

2. DO NOT feed one data channel with multiple SeedLink streams. This can have severe consequences:

a. A channel fed by multiple live streams will have many small time sequences out of order.
merge! is not guaranteed to fix it.

b. SeedLink will almost certainly crash.

c. Your data may be corrupted.

d. The Julia interpreter can freeze, requiring kill -9 on the process.

e. This is not an “issue”. There will never be a workaround. It’s what happens when one
intentionally causes TCP congestion on one’s own machine while writing to open data
streams in memory. Hint: don’t do this.

Special Methods

• close(S.c[i]) ends SeedLink connection i.

• !deleteat(S.c, i) removes a handle to closed SeedLink connection i.

3.2.2 SeedLink Utilities

SL_info(v, url)

Retrieve SeedLink information at verbosity level v from url. Returns XML as a string. Valid strings for L
are ID, CAPABILITIES, STATIONS, STREAMS, GAPS, CONNECTIONS, ALL.

has_sta(sta[, u=url, port=n])

SL keywords: gap, port
Other keywords: u specifies the URL without “http://”

Check that streams exist at url for stations sta, formatted NET.STA. Use “?” to match any single character.
Returns true for stations that exist. sta can also be the name of a valid config file or a 1d string array.

Returns a BitArray with one value per entry in sta.

has_stream(cha::Union{String, Array{String, 1}}, u::String)

SL keywords: gap, port
Other keywords: u specifies the URL without “http://”

3.2. SeedLink 19

http://
http://

SeisIO Documentation, Release 0.1.2 rc

Check that streams with recent data exist at url u for channel spec cha, formatted
NET.STA.LOC.CHA.DFLAG, e.g. “UW.TDH..EHZ.D, CC.HOOD..BH?.E”. Use “?” to match any
single character. Returns true for streams with recent data.

cha can also be the name of a valid config file.

has_stream(sta::Array{String, 1}, sel::Array{String, 1}, u::String, port=N::Int, gap=G::Real)

SL keywords: gap, port
Other keywords: u specifies the URL without “http://”

If two arrays are passed to has_stream, the first should be formatted as SeedLink STATION patterns (for-
mated “SSSSS NN”, e.g. [“TDH UW”, “VALT CC”]); the second be an array of SeedLink selector patterns
(formatted LLCCC.D, e.g. [“??EHZ.D”, “??BH?.?”]).

20 Chapter 3. Web

http://

CHAPTER

FOUR

PROCESSING

4.1 Data Processing

Basic data processing operations are described below.

autotap!(S)

Cosine taper each channel in S around time gaps, then fill time gaps with the mean of non-NaN data points.

Remove the mean from all channels i with S.fs[i] > 0.0. Specify irr=true to also remove the mean from
irregularly sampled channels. Ignores NaNs.

“Safe” demean with results output to a new structure.

Remove the polynomial trend of degree n from every regularly-sampled channel i in S using a least-squares
polynomial fit. Ignores NaNs. Channels of irregularly-sampled data are not (and cannot be) detrended.

Warning: detrend! does not check for data gaps; if this is problematic, call ungap!(S, m=true) first!

“Safe” detrend with results output to a new structure.

equalize_resp!(S, resp_new::Array[, hc_new=HC, C=CH])

Translate all data in SeisData structure S to instrument response resp_new. Expected structure of
resp_new is a complex Float64 2d array with zeros in resp[:,1], poles in resp[:,2]. If channel i
has key S.misc[i]["hc"], the corresponding value is used as the critical damping constant; otherwise
a value of 1.0 is assumed.

lcfs(fs::Array{Float64, 1})

Find L*owest *C*ommon *fs, the lowest sampling frequency at which data can be upsampled by repeating
an integer number of copies of each sample value.

mseis!(S::SeisData, U::SeisData, ...)

Merge multiple SeisData structures into S.

prune!(S::SeisData)

Delete all channels from S that have no data (i.e. S.x is empty or non-existent).

pull(S::SeisData, id::String)

Extract the first channel with id=id from S and return it as a new SeisChannel structure. The corresponding
channel in S is deleted.

21

SeisIO Documentation, Release 0.1.2 rc

pull(S::SeisData, i::integer)

Extract channel i from S as a new SeisChannel struct, deleting it from S.

Synchronize the start times of all data in S to begin at or after the last start time in S.

Synchronize all data in S to start at ST and terminate at EN with verbosity level VV.

For regularly-sampled channels, gaps between the specified and true times are filled with the mean; this isn’t
possible with irregularly-sampled data.

Specifying start time * s=”last”: (Default) sync to the last start time of any channel in S. * s=”first”:
sync to the first start time of any channel in S. * A numeric value is treated as an epoch time (?time for
details). * A DateTime is treated as a DateTime. (see Dates.DateTime for details.) * Any string other than
“last” or “first” is parsed as a DateTime.

Specifying end time (t) * t=”none”: (Default) end times are not synchronized. * t=”last”: synchronize
all channels to end at the last end time in S. * t=”first” synchronize to the first end time in S. * numeric,
datetime, and non-reserved strings are treated as for -s.

Related functions: time, Dates.DateTime, parsetimewin

ungap!(S, [m=true, w=true])

Cosine taper all subsequences of regularly-sampled data and fill gaps with the mean of non-NaN data points.
m=false leaves time gaps set to NaNs; w=false prevents cosine tapering.

T = ungap(S)

“Safe” ungap of SeisData object S to a new SeisData object T.

unscale!(S[, all=false])

Divide the gains from all channels i with S.fs[i] > 0.0. Specify all=true to also remove gains of irregularly-
sampled channels.

22 Chapter 4. Processing

CHAPTER

FIVE

APPENDICES

5.1 Utility Functions

This appendix covers utility functions that belong in no other category.

distaz!(Ev::SeisEvent)

Fill Ev with great-circle distance, azimuth, and back-azimuth for each channel. Writes to evt.data.misc.

d2u(DT::DateTime)

Aliased to Dates.datetime2unix.

Keyword hc_new specifies the new critical damping constant. Keyword C specifies an array of channel
numbers on which to operate; by default, every channel with fs > 0.0 is affected.

fctopz(fc)

Convert critical frequency fc to a matrix of complex poles and zeros; zeros in resp[:,1], poles in
resp[:,2].

find_regex(path::String, r::Regex)

OS-agnostic equivalent to Linux find. First argument is a path string, second is a Regex. File strings are
postprocessed using Julia’s native PCRE Regex engine. By design, find_regex only returns file names.

(dist, az, baz) = gcdist([lat_src, lon_src], rec)

Compute great circle distance, azimuth, and backazimuth from source coordinates [lat_src,
lon_src] to receiver coordinates in rec using the Haversine formula. rec must be a two-column matix
arranged [lat lon]. Returns a tuple of arrays.

getbandcode(fs, fc=FC)

Get SEED-compliant one-character band code corresponding to instrument sample rate fs and corner fre-
quency FC. If unset, FC is assumed to be 1 Hz.

ls(s::String)

Similar functionality to Bash ls with OS-agnostic output. Accepts wildcards in paths and file names. *
Always returns the full path and file name. * Partial file name wildcards (e.g. “ls(data/2006*.sac)) invoke
glob. * Path wildcards (e.g. ls(/data/*/*.sac)) invoke find_regex to circumvent glob limitations. * Passing
ony “*” as a filename (e.g. “ls(/home/*)) invokes find_regex to recursively search subdirectories, as in the
Bash shell.

23

SeisIO Documentation, Release 0.1.2 rc

ls()

Return full path and file name of files in current working directory.

j2md(y, j)

Convert Julian day j of year y to month, day.

md2j(y, m, d)

Convert month m, day d of year y to Julian day j.

Remove unwanted characters from S.

parsetimewin(s, t)

Convert times s and t to strings 𝛼, 𝜔 sorted 𝛼 < 𝜔. s and t can be real numbers, DateTime objects, or ASCII
strings. Expected string format is “yyyy-mm-ddTHH:MM:SS.nnn”, e.g. 2016-03-23T11:17:00.333.

webhdr()

Generate a Dict{String,String} to set UserAgent in web requests.

“Safe” synchronize of start and end times of all trace data in SeisData structure S to a new structure U.

u2d(x)

Alias to Dates.unix2datetime.

function:: w_time(W::Array{Int64,2}, fs::Float64)

Convert matrix W from time windows (w[:,1]:w[:,2]) in integer 𝜇s from the Unix epoch (1970-01-
01T00:00:00) to sparse delta-encoded time representation. Specify fs in Hz.

5.1.1 RandSeis

This submodule is used to quickly generate SeisIO structures with quasi-random field contents. Access it
by typing “using SeisIO.RandSeis”

• Channels have SEED-compliant IDs, sampling frequencies, and data types.

• Channel data are randomly generated.

• Some time gaps are automatically inserted into regularly-sampled data.

• Instrument location parameters are randomly set.

C = randSeisChannel([,c=false, s=false])

Generate a SeisChannel of random data. Specify c=true for campaign-style (irregularly-sampled) data (fs =
0.0); specify s=true to guarantee seismic data. s=true overrides c=true.

Generate 8 to 24 channels of random seismic data as a SeisData object.

• 100*c% of channels after the first will have irregularly-sampled data (fs = 0.0)

• 100*s% of channels after the first are guaranteed to have seismic data.

randSeisData(N[, c=0.2, s=0.6])

Generate N channels of random seismic data as a SeisData object.

24 Chapter 5. Appendices

SeisIO Documentation, Release 0.1.2 rc

randSeisEvent([c=0.2, s=0.6])
Generate a SeisEvent structure filled with random values. * 100*c% of channels after the first will have
irregularly-sampled data (fs = 0.0) * 100*s% of channels after the first are guaranteed to have seismic data.

H = randSeisHdr()

Generate a SeisHdr structure filled with random values.

5.2 Structure and Field Descriptions

5.2.1 SeisChannel Fields

Name Type Meaning
id String unique channel ID formatted net.sta.loc.cha
name String freeform channel name string
src String description of data source
units String units of dependent variable1

fs Float64 sampling frequency in Hz
gain Float64 scalar to convert x to SI units in flat part of power spectrum2

loc Array{Float64,1} sensor location: [lat, lon, ele, az, inc]3

resp Array{Complex {Float64},2} complex instrument response4

misc Dict{String,Any} miscellaneous information5

notes Array{String,1} timestamped notes
t Array{Int64,2} time gaps (see below)
x Array{Float64,1} univariate data

Table Footnotes

5.2.2 SeisData Fields

As SeisChannel, plus

Name Type Meaning
n Int64 number of channels
c Array{TCPSocket,1} array of TCP connections

Time Convention

The units of t are integer microseconds, measured from Unix epoch time (1970-01-01T00:00:00.000).

For regularly sampled data (fs > 0.0), each t is a sparse delta-compressed representation of time gaps
in the corresponding x. The first column stores indices of gaps; the second, gap lengths.

1 Use UCUM-compliant abbreviations wherever possible.
2 Gain has an identical meaning to the “Stage 0 gain” of FDSN XML.
3 Azimuth is measured clockwise from North; incidence of 0° = vertical; both use degrees.
4 Zeros in :resp[i][:,1], poles in :resp[i][:,2].
5 Arrays in :misc should each contain a single Type (e.g. Array{Float64,1}, never Array{Any,1}). See the SeisIO file format

description for a full list of allowed value types in :misc.

5.2. Structure and Field Descriptions 25

http://unitsofmeasure.org/trac

SeisIO Documentation, Release 0.1.2 rc

Within each time field, t[1,2] stores the time of the first sample of the corresponding x. The last row of
each t should always take the form ‘ [length(x) 0]‘. Other rows take the form [(starting index of
gap) (length of gap)].

For irregularly sampled data (fs = 0), t[:,2] is a dense representation of time stamps for each sample.

5.2.3 SeisHdr Fields

Name Type Meaning
id Int64 numeric event ID
ot DateTime origin time
loc Array{Float64, 1} hypocenter
mag Tuple{Float32, String} magnitude, scale
int Tuple{UInt8, String} intensity, scale
mt Array{Float64, 1} moment tensor: (1-6) tensor, (7) scalar moment, (8)

%dc
np Array{Tuple{Float64, Float64,

Float64},1}
nodal planes

pax Array{Tuple{Float64, Float64,
Float64},1}

principal axes, ordered P, T, N

src String data source (e.g. url/filename)

5.2.4 SeisEvent Fields

Name Type Meaning
hdr SeisHdr event header
data SeisData event data

5.3 SeisIO File Format

Files are written in little-endian byte order.

Table 1: Abbreviations used in this section
Var Meaning Julia C <stdint.h>
c unsigned 8-bit character Char unsigned char
f32 32-bit float Float32 float
f64 64-bit float Float64 double
i64 signed 64-bit integer Int64 int64_t
u8 unsigned 8-bit int UInt8 uint8_t
u32 unsigned 32-bit int UInt32 int32_t
u64 unsigned 64-bit int UInt64 uint64_t
u(8) unsigned 8-bit integer UInt8 uint8_t
i(8) signed 8-bit integer Int8 int8_t
f(8) 8-bit float Float8 float or double

26 Chapter 5. Appendices

SeisIO Documentation, Release 0.1.2 rc

5.3.1 File header

Table 2: File header (14 bytes + TOC)
Var Meaning T N

“SEISIO” c 6
V SeisIO version f32 1
jv Julia version f32 1
J # of SeisIO objects in file u32 1
C Character codes for each object c J
B Byte indices for each object u64 J

The Julia version stores VERSION.major.VERSION.minor as a Float32, e.g. v0.5 is stored as 0.5f0; SeisIO
version is stored similarly.

Table 3: Object codes
Char Meaning
‘D’ SeisData
‘H’ SeisHdr
‘E’ SeisEvent

5.3.2 SeisHdr

Structural overview:

Int64_vals
:mag[1] # Float32
Float64_vals
UInt8_vals
:misc

Table 4: Int64 values
Var Meaning
id event id
ot origin time in integer 𝜇s from Unix epoch
L_int length of intensity scale string
L_src length of src string
L_notes length of notes string

Magnitude is stored as a Float32 after the Int64 values.

Table 5: Float64 values
Var N Meaning
loc 3 lat, lon, dep
mt 8 tensor, scalar moment, %dc
np 6 np (nodal planes: 1st, 2nd)
pax 9 pax (principal axes: P, T, N)

5.3. SeisIO File Format 27

SeisIO Documentation, Release 0.1.2 rc

Table 6: UInt8 values
Var N Meaning
msc 2 magnitude scale characters
c 1 separator for notes
i 1 intensity value
i_sc L_int intensity scale string
src L_src :src as a string
notes L_notes :notes joined a string with delimiter c

Entries in Misc are stored after UInt8 values. See below for details.

5.3.3 SeisData

Structural overview:

S.n # UInt32
Repeated for each channel
Int64_vals
Float64_vals
UInt8_vals # including compressed S.x
:misc

S.x is compressed with BloscLZ before writing to disk.

Channel data

Table 7: Int64 values
Var N Meaning
L_t length(S.t)
r length(S.resp)
L_units length(S.units)
L_src length(S.src)
L_name length(S.name)
L_notes length of notes string
lxc length of BloscLZ-compressed S.x
L_x length(S.x)
t L_t S.t

Table 8: Float64 values
Var N Meaning
fs 1 S.fs
gain 1 S.gain
loc 5 S.loc (lat, lon, dep, az, inc)
resp 2*r real(S.resp[:]) followed by imag(S.resp[:])

28 Chapter 5. Appendices

SeisIO Documentation, Release 0.1.2 rc

Convert resp with resp = rr[1:r] + im*rr[r+1:2*r] and reshape to a two-column array with r
rows. The first column of the new, complex-valued resp field holds zeros, the second holds poles.

Table 9: UInt8 values
Var N Meaning
c 1 separator for notes
ex 1 type code for S.x
id 15 S.id
units L_units S.units
src L_src S.src
name L_name S.name
notes L_notes S.notes joined as a string with delimiter c
xc lxc Blosc-compressed S.x

S.misc is written last, after the compressed S.x

Storing misc

:misc is a Dict{String,Any} for both SeisData and SeisHdr, with limited support for key value types.
Structural overview:

L_keys
char_separator # for keys
keys # joined as a string
for each key k
type_code # UInt8 code for misc[k]
value # value of misc[k]

Table 10: :misc keys
Var Meaning T N
L length of keys string i64 1
p character separator u8 1
K string of keys u8 p

5.3. SeisIO File Format 29

SeisIO Documentation, Release 0.1.2 rc

Table 11: Supported :misc value Types
code value Type code value Type
0 Char 128 Array{Char,1}
1 String 129 Array{String,1}
16 UInt8 144 Array{UInt8,1}
17 UInt16 145 Array{UInt16,1}
18 UInt32 146 Array{UInt32,1}
19 UInt64 147 Array{UInt64,1}
20 UInt128 148 Array{UInt128,1}
32 Int8 160 Array{Int8,1}
33 Int16 161 Array{Int16,1}
34 Int32 162 Array{Int32,1}
35 Int64 163 Array{Int64,1}
36 Int128 164 Array{Int128,1}
48 Float16 176 Array{Float16,1}
49 Float32 177 Array{Float32,1}
50 Float64 178 Array{Float64,1}
80 Complex{UInt8} 208 Array{Complex{UInt8},1}
81 Complex{UInt16} 209 Array{Complex{UInt16},1}
82 Complex{UInt32} 210 Array{Complex{UInt32},1}
83 Complex{UInt64} 211 Array{Complex{UInt64},1}
84 Complex{UInt128} 212 Array{Complex{UInt128},1}
96 Complex{Int8} 224 Array{Complex{Int8},1}
97 Complex{Int16} 225 Array{Complex{Int16},1}
98 Complex{Int32} 226 Array{Complex{Int32},1}
99 Complex{Int64} 227 Array{Complex{Int64},1}
100 Complex{Int128} 228 Array{Complex{Int128},1}
112 Complex{Float16} 240 Array{Complex{Float16},1}
113 Complex{Float32} 241 Array{Complex{Float32},1}
114 Complex{Float64} 242 Array{Complex{Float64},1}

Julia code for converting between data types and UInt8 type codes is given below.

findtype(c::UInt8, T::Array{Type,1}) = T[findfirst([sizeof(i)==2^c for i in
→˓T])]
function code2typ(c::UInt8)

t = Any::Type
if c >= 0x80

t = Array{code2typ(c-0x80)}
elseif c >= 0x40

t = Complex{code2typ(c-0x40)}
elseif c >= 0x30

t = findtype(c-0x2f, Array{Type,1}(subtypes(AbstractFloat)))
elseif c >= 0x20

t = findtype(c-0x20, Array{Type,1}(subtypes(Signed)))
elseif c >= 0x10

t = findtype(c-0x10, Array{Type,1}(subtypes(Unsigned)))
(continues on next page)

30 Chapter 5. Appendices

SeisIO Documentation, Release 0.1.2 rc

(continued from previous page)

elseif c == 0x01
t = String

elseif c == 0x00
t = Char

else
t = Any

end
return t

end

tos(t::Type) = round(Int64, log2(sizeof(t)))
function typ2code(t::Type)

n = 0xff
if t == Char

n = 0x00
elseif t == String

n = 0x01
elseif t <: Unsigned

n = 0x10 + tos(t)
elseif t <: Signed

n = 0x20 + tos(t)
elseif t <: AbstractFloat

n = 0x30 + tos(t)-1
elseif t <: Complex

n = 0x40 + typ2code(real(t))
elseif t <: Array

n = 0x80 + typ2code(eltype(t))
end
return UInt8(n)

end

Type “Any” is provided as a default; it is not supported.

Standard Types in :misc

Most values in :misc are saved as a UInt8 code followed by the value itself.

Unusual Types in :misc

The tables below describe how to read non-bitstype data into :misc.

Table 12: Array{String}
Var Meaning T N
nd array dimensionality u8 1
d array dimensions i64 nd

if d!=[0]:
sep string separator c 1
L_S length of char array i64 1
S string array as chars u8 L_S

5.3. SeisIO File Format 31

SeisIO Documentation, Release 0.1.2 rc

If d=[0], indicating an empty String array, set S to an empty String array and do not read sep, L_S, or S.

Table 13: Array{Complex}
Var Meaning T N
nd array dimensionality u8 1
d array dimensions i64 nd
rr real part of array 𝜏 d
ii imaginary part of array 𝜏 d

Here, 𝜏 denotes the type of the real part of one element of v.

Table 14: Array{Real}
Var Meaning T N
nd array dimensionality u8 1
d array dimensions i64 nd
v array values 𝜏 d

Here, 𝜏 denotes the type of one element of v.

Table 15: String
Var Meaning T N
L_S length of string i64 1
S string u8 L_S

5.3.4 SeisEvent

A SeisEvent structure is stored as a SeisHdr object followed by a SeisData object. However, the combination
of SeisHdr and SeisData objects that comprises a SeisEvent object counts as one object, not two, in the file
TOC.

5.4 Data Requests Syntax

5.4.1 Channel ID Syntax

NN.SSSSS.LL.CC (net.sta.loc.cha, separated by periods) is the expected syntax for all web functions.
The maximum field width in characters corresponds to the length of each field (e.g. 2 for network). Fields
can’t contain whitespace.

NN.SSSSS.LL.CC.T (net.sta.loc.cha.tflag) is allowed in SeedLink. T is a single-character data type flag
and must be one of DECOTL: Data, Event, Calibration, blOckette, Timing, or Logs. Calibration, timing, and
logs are not in the scope of SeisIO and may crash SeedLink sessions.

The table below specifies valid types and expected syntax for channel lists.

32 Chapter 5. Appendices

SeisIO Documentation, Release 0.1.2 rc

Type Description Example
String Comma-delineated list of IDs “PB.B004.01.BS1,PB.B002.01.BS1”
Array{String,1} String array, one ID string per

entry
[“PB.B004.01.BS1”,”PB.B002.01.BS1”]

Array{String,2} String array, one ID string per
row [“PB” “B004” “01” “BS1”;

“PB” “B002” “01” “BS1”]

The expected component order is always network, station, location, channel; thus, “UW.TDH..EHZ” is OK,
but “UW.TDH.EHZ” fails.

chanspec()

Type ?chanspec in Julia to print the above info. to stdout.

Wildcards and Blanks

Allowed wildcards are client-specific.

• The LOC field can be left blank in any client: "UW.ELK..EHZ" and ["UW" "ELK" "" "EHZ"]
are all valid. Blank LOC fields are set to -- in IRIS, * in FDSN, and ?? in SeedLink.

• ? acts as a single-character wildcard in FDSN & SeedLink. Thus, CC.VALT..??? is valid.

• * acts as a multi-character wildcard in FDSN. Thus, CC.VALT..* and CC.VALT..??? behave
identically in FDSN.

• Partial specifiers are OK, but a network and station are always required: "UW.EL?" is OK, ".ELK.
." fails.

Channel Configuration Files

One entry per line, ASCII text, format NN.SSSSS.LL.CCC.D. Due to client-specific wildcard rules, the
most versatile configuration files are those that specify each channel most completely:

This only works with SeedLink
GE.ISP..BH?.D
NL.HGN
MN.AQU..BH?
MN.AQU..HH?
UW.KMO
CC.VALT..BH?.D

This works with FDSN and SeedLink, but not IRIS
GE.ISP..BH?
NL.HGN
MN.AQU..BH?
MN.AQU..HH?
UW.KMO
CC.VALT..BH?

(continues on next page)

5.4. Data Requests Syntax 33

SeisIO Documentation, Release 0.1.2 rc

(continued from previous page)

This works with all three:
GE.ISP..BHZ
GE.ISP..BHN
GE.ISP..BHE
MN.AQU..BHZ
MN.AQU..BHN
MN.AQU..BHE
MN.AQU..HHZ
MN.AQU..HHN
MN.AQU..HHE
UW.KMO..EHZ
CC.VALT..BHZ
CC.VALT..BHN
CC.VALT..BHE

Server List

String Source
BGR http://eida.bgr.de
EMSC http://www.seismicportal.eu
ETH http://eida.ethz.ch
GEONET http://service.geonet.org.nz
GFZ http://geofon.gfz-potsdam.de
ICGC http://ws.icgc.cat
INGV http://webservices.ingv.it
IPGP http://eida.ipgp.fr
IRIS http://service.iris.edu
ISC http://isc-mirror.iris.washington.edu
KOERI http://eida.koeri.boun.edu.tr
LMU http://erde.geophysik.uni-muenchen.de
NCEDC http://service.ncedc.org
NIEP http://eida-sc3.infp.ro
NOA http://eida.gein.noa.gr
ORFEUS http://www.orfeus-eu.org
RESIF http://ws.resif.fr
SCEDC http://service.scedc.caltech.edu
TEXNET http://rtserve.beg.utexas.edu
USGS http://earthquake.usgs.gov
USP http://sismo.iag.usp.br

seis_www()

Type ?seis_www in Julia to print the above info. to stdout.

34 Chapter 5. Appendices

http://eida.bgr.de
http://www.seismicportal.eu
http://eida.ethz.ch
http://service.geonet.org.nz
http://geofon.gfz-potsdam.de
http://ws.icgc.cat
http://webservices.ingv.it
http://eida.ipgp.fr
http://service.iris.edu
http://isc-mirror.iris.washington.edu
http://eida.koeri.boun.edu.tr
http://erde.geophysik.uni-muenchen.de
http://service.ncedc.org
http://eida-sc3.infp.ro
http://eida.gein.noa.gr
http://www.orfeus-eu.org
http://ws.resif.fr
http://service.scedc.caltech.edu
http://rtserve.beg.utexas.edu
http://earthquake.usgs.gov
http://sismo.iag.usp.br

SeisIO Documentation, Release 0.1.2 rc

5.4.2 Time Syntax

Specify time inputs for web queries as a DateTime, Real, or String. The latter must take the form YYYY-
MM-DDThh:mm:ss.nnn, where T is the uppercase character T and nnn denotes milliseconds; incomplete
time strings treat missing fields as 0.

type(s) type(t) behavior
DT DT Sort only
R DT Add s seconds to t
DT R Add t seconds to s
S R Convert s to DateTime, add t
R S Convert t to DateTime, add s
R R Add s, t seconds to now()

(above, R = Real, DT = DateTime, S = String, I = Integer)

5.5 SeisIO Standard Keywords

SeisIO.KW is a memory-resident structure of default values for common keywords used by package func-
tions. KW has one substructure, SL, with keywords specific to SeedLink. These defaults current cannot be
modified, but this may change as the Julia language matures.

KW Default T1 Meaning
evw [600.0, 600.0] A{F,1} time search window [o-evw[1], o+evw[2]]
fmt “miniseed” S request data format
mag [6.0, 9.9] A{F,1} magnitude range for queries
nd 1 I number of days per subrequest
nev 1 I number of events returned per query
opts “” S user-specified options2

pha “P” S seismic phase arrival times to retrieve
rad [] A{F,1} radial search region3

reg [] A{F,1} rectangular search region4

si true B autofill station info on data req?5

to 30 I read timeout for web requests (s)
v 0 I verbosity
w false B write requests to disc?6

y false B sync data after web request?7

1 Types: A = Array, B = Boolean, C = Char, DT = DateTime, F = Float, I = Integer, R = Real, S = String, U8 = Unsigned 8-bit
integer

2 String is passed as-is, e.g. “szsrecs=true&repo=realtime” for FDSN. String should not begin with an ampersand.
3 Specify region [center_lat, center_lon, min_radius, max_radius, dep_min, dep_max], with lat, lon, and radius in decimal

degrees (°) and depth in km with + = down. Depths are only used for earthquake searches.
4 Specify region [lat_min, lat_max, lon_min, lon_max, dep_min, dep_max], with lat, lon in decimal degrees (°) and depth in

km with + = down. Depths are only used for earthquake searches.
5 Not used with IRISWS.
6 -v=0 = quiet; 1 = verbose, 2 = debug; 3 = verbose debug
7 If -w=true, a file name is automatically generated from the request parameters, in addition to parsing data to a SeisData

5.5. SeisIO Standard Keywords 35

SeisIO Documentation, Release 0.1.2 rc

Table Footnotes

5.5.1 SeedLink Keywords

kw def type meaning
gap 3600 R a stream with no data in >gap seconds is considered

offline
kai 600 R keepalive interval (s)
mode “DATA” I “TIME”, “DATA”, or “FETCH”
port 18000 I port number
refresh 20 R base refresh interval (s)8

x_on_err true Bool exit on error?

Table Footnotes

5.6 Examples

5.6.1 FDSN data query

1. Download 10 minutes of data from four stations at Mt. St. Helens (WA, USA), delete the low-gain
channels, and save as SAC files in the current directory.

S = get_data("FDSN", "CC.VALT, UW.SEP, UW.SHW, UW.HSR", src="IRIS", t=-600)
S -= "SHW.ELZ..UW"
S -= "HSR.ELZ..UW"
writesac(S)

2. Get 5 stations, 2 networks, all channels, last 600 seconds of data at IRIS

CHA = "CC.PALM, UW.HOOD, UW.TIMB, CC.HIYU, UW.TDH"
TS = u2d(time())
TT = -600
S = get_data("FDSN", CHA, src="IRIS", s=TS, t=TT)

3. A request to FDSN Potsdam, time-synchronized, with some verbosity

ts = "2011-03-11T06:00:00"
te = "2011-03-11T06:05:00"
R = get_data("FDSN", "GE.BKB..BH?", src="GFZ", s=ts, t=te, v=1, y=true)

5.6.2 FDSN station query

A sample FDSN station query

S = FDSNsta("CC.VALT..,PB.B001..BS?,PB.B001..E??")

structure. Files are created from the raw download even if data processing fails, in contrast to get_data(. . . wsac=true).
8 This value is modified slightly by each SeedLink session to minimize the risk of congestion

36 Chapter 5. Appendices

SeisIO Documentation, Release 0.1.2 rc

5.6.3 FDSN event header/data query

Get seismic and strainmeter records for the P-wave of the Tohoku-Oki great earthquake on two borehole
stations and write to native SeisData format:

S = FDSNevt("201103110547", "PB.B004..EH?,PB.B004..BS?,PB.B001..BS?,PB.B001..
→˓EH?")
wseis("201103110547_evt.seis", S)

5.6.4 IRISWS data query

Note that the “src” keyword is not used in IRIS queries.

1. Get trace data from IRISws from TS to TT at channels CHA

S = SeisData()
CHA = "UW.TDH..EHZ, UW.VLL..EHZ, CC.VALT..BHZ"
TS = u2d(time()-86400)
TT = 600
get_data!(S, "IRIS", CHA, s=TS, t=TT)

2. Get synchronized trace data from IRISws with a 55-second timeout on HTTP requests, written directly
to disk.

CHA = "UW.TDH..EHZ, UW.VLL..EHZ, CC.VALT..BHZ"
TS = u2d(time())
TT = -600
S = get_data("IRIS", CHA, s=TS, t=TT, y=true, to=55, w=true)

3. Request 10 minutes of continuous vertical-component data from a small May 2016 earthquake swarm at
Mt. Hood, OR, USA:

STA = "UW.HOOD.--.BHZ,CC.TIMB.--.EHZ"
TS = "2016-05-16T14:50:00"; TE = 600
S = get_data("IRIS", STA, "", s=TS, t=TE)

4. Grab data from a predetermined time window in two different formats

ts = "2016-03-23T23:10:00"
te = "2016-03-23T23:17:00"
S = get_data("IRIS", "CC.JRO..BHZ", s=ts, t=te, fmt="sacbl")
T = get_data("IRIS", "CC.JRO..BHZ", s=ts, t=te, fmt="miniseed")

5.6.5 SeedLink sessions

1. An attended SeedLink session in DATA mode. Initiate a SeedLink session in DATA mode using config
file SL.conf and write all packets received directly to file (in addition to parsing to S itself). Set nominal
refresh interval for checking for new data to 10 s. A mini-seed file will be generated automatically.

S = SeisData()
SeedLink!(S, "SL.conf", mode="DATA", r=10, w=true)

5.6. Examples 37

SeisIO Documentation, Release 0.1.2 rc

2. An unattended SeedLink download in TIME mode. Get the next two minutes of data from stations GPW,
MBW, SHUK in the UW network. Put the Julia REPL to sleep while the request fills. If the connection
is still open, close it (SeedLink’s time bounds arent precise in TIME mode, so this may or may not be
necessary). Pause briefly so that the last data packets are written. Synchronize results and write data in
native SeisIO file format.

sta = "UW.GPW,UW.MBW,UW.SHUK"
s0 = now()
S = SeedLink(sta, mode="TIME", s=s0, t=120, r=10)
sleep(180)
isopen(S.c[1]) && close(S.c[1])
sleep(20)
sync!(S)
fname = string("GPW_MBW_SHUK", s0, ".seis")
wseis(fname, S)

3. A SeedLink session in TIME mode

sta = "UW.GPW, UW.MBW, UW.SHUK"
S1 = SeedLink(sta, mode="TIME", s=0, t=120)

4. A SeedLink session in DATA mode with multiple servers, including a config file. Data are parsed roughly
every 10 seconds. A total of 5 minutes of data are requested.

sta = ["CC.SEP", "UW.HDW"]
To ensure precise timing, we'll pass d0 and d1 as strings
st = 0.0
en = 300.0
dt = en-st
(d0,d1) = parsetimewin(st,en)

S = SeisData()
SeedLink!(S, sta, mode="TIME", r=10.0, s=d0, t=d1)
println(stdout, "...first link initialized...")

Seedlink with a config file
config_file = "seedlink.conf"
SeedLink!(S, config_file, r=10.0, mode="TIME", s=d0, t=d1)
println(stdout, "...second link initialized...")

Seedlink with a config string
SeedLink!(S, "CC.VALT..???, UW.ELK..EHZ", mode="TIME", r=10.0, s=d0, t=d1)
println(stdout, "...third link initialized...")

38 Chapter 5. Appendices

INDEX

C
chanspec() (built-in function), 33

D
d2u() (built-in function), 23

F
fctopz() (built-in function), 23
find_regex() (built-in function), 23
findchan() (built-in function), 6
findid() (built-in function), 6

G
getbandcode() (built-in function), 23

H
has_sta() (built-in function), 19
has_stream() (built-in function), 19

J
j2md() (built-in function), 24

L
lcfs() (built-in function), 21
ls() (built-in function), 23

M
md2j() (built-in function), 24

P
parsetimewin() (built-in function), 24
pull() (built-in function), 21

R
randSeisEvent() (built-in function), 24
readmseed() (built-in function), 12
readsac() (built-in function), 12
readsegy() (built-in function), 12

readuw() (built-in function), 12
readwin32() (built-in function), 12
rsac() (built-in function), 12
rseis() (built-in function), 13

S
sachdr() (built-in function), 13
segyhdr() (built-in function), 13
seis_www() (built-in function), 34
SeisChannel() (built-in function), 8
SeisData() (built-in function), 8
SeisEvent() (built-in function), 8
SeisHdr() (built-in function), 8
SL_info() (built-in function), 19

T
timestamp() (built-in function), 7

U
u2d() (built-in function), 24
uwdf() (built-in function), 13
uwpf() (built-in function), 13

W
webhdr() (built-in function), 24
writesac() (built-in function), 13
wseis() (built-in function), 13

39

	Intro
	Introduction
	Working with Data
	Data Types

	Files
	File Formats

	Web
	Web Requests
	SeedLink

	Processing
	Data Processing

	Appendices
	Utility Functions
	Structure and Field Descriptions
	SeisIO File Format
	Data Requests Syntax
	SeisIO Standard Keywords
	Examples

	Index

