
Chapter 6

JuMPeR: Algebraic Modeling for

Robust and Adaptive Optimization

The histories of computing and the solution of mathematical optimization problems

are intricately linked, as rapid increases from the 1950s onwards in the availability and

power of computers were applied widely to solving a variety of planning problems in

industry and military applications [Orchard-Hays, 1984]. However, as the capability

to solve ever-larger problems grew, a gap developed between the ability to solve larger

problems and the ability to describe and manipulate them. Input formats for solvers

were painful and slow for people to use, and were proving a major barrier to the

further adoption of optimization technology [Fourer, 2012].

Algebraic modeling languages (AMLs) were developed in the late 1970s as a solu-

tion to this problem. They enabled users to express their optimization problems in

a natural format that is similar to the original mathematical expressions, and auto-

mate the translation to a lower-level format suitable for solvers. Two of the first AMLs

that made a significant impact on the field of optimization, and are still in use today,

are the commercial packages GAMS [Brooke et al., 1999] and AMPL [Fourer et al.,

2003] (created in 1978 and 1985 respectively). For the most part, AMLs have focused

on two broad classes of optimization problems: mixed-integer linear optimization

(MILO) and quadratic optimization (MIQO) problems, and constrained nonlinear

optimization problems. For MILO problems, solvers typically expect the problem

177

to presented in “standard computational form” (i.e., min

x�0

c

T
x, Ax = b), so the

task of an AML is primarily to generate the sparse A matrix and vectors c and b.

While there may be some problem transformations (e.g., “presolve”), in general there

is normally a simple mapping between the user’s input and the solver’s input – but

this mapping is one that would be painful to perform manually. In the majority of

AMLs there is no capability for more advanced transformations or interactions with

the solver – for example, in a scenario-based approach to solve a stochastic program,

the user is responsible for manually iterating over the scenarios to express the recourse

decision variables and constraints.

Robust optimization (RO) problems, which we address in this chapter, require

the user to either manually reformulate their optimization problem using duality

(necessitating the inconvenient introduction of auxiliary variables and constraints)

or implementing a cutting plane method from scratch. While performing these op-

erations even once can be time-consuming and error prone, small changes in the

problem structure (e.g., changing the uncertainty set) can require substantial effort

on the users part to update the model. We suggest that, much as the lack of AMLs

hindered uptake of mathematical optimization on computers in the past, the lack of

AMLs for more complex settings such as robust and adaptive optimization prevents

uptake by practitioners and introduces inefficiencies for researchers.

In this chapter, we present JuMPeR, an extension to the JuMP modeling lan-

guage [Lubin and Dunning, 2015, Dunning et al., 2015]. It is available for download

with the Julia package manager. It extends the modeling capabilities of JuMP by

adding primitives for uncertain parameters, adaptive decisions, and uncertainty sets,

enabling a rich variety of RO problems to modeled in a high-level fashion independent

of the particular solution method. It interfaces with a wide variety of solvers, inherits

all the general-purpose programming capabilities of its host language Julia [Bezan-

son et al., 2014], and is designed to be extensible for new developments in RO and

adaptive RO (ARO).

178

JuMPeR

User code

JuMP MathProgBase.jl
. . .

Gurobi.jl

. . .
Clp.jl
Cbc.jl

. . .
. . .

Figure 6-1: Overview of how JuMPeR interacts with related packages. User code
(red, dashed) depends explicitly on both JuMPeR and JuMP. JuMP depends on the
MathProgBase package which provides an abstraction over solvers. Each underlying
solver library (green, loose dashes) has a thin Julia wrapper package.

Chapter structure

• In Section 6.1, we outline the capabilities of JuMPeR, its relationship to JuMP

and solvers, and the key primitives available to build ARO models.

• In Section 6.2, we describe JuMPeR’s uncertainty set system and how JuMPeR

solves ARO problems.

• In Section 6.3, we present three case studies using JuMPeR: portfolio optimiza-

tion, multistage inventory control [Ben-Tal et al., 2004], and specialized cutting

plane methods.

• Finally, in Section 6.4, we compare and constrast JuMPeR with similar tools.

179

6.1 Overview of JuMPeR

JuMPeR is implemented as a package for the Julia programming language. Julia

is a relatively new “high-level, high-performance dynamic programming language for

technical computing”1, with syntax that would be familiar for users of languages like

Python or MATLAB. Some of Julia’s features are particularly useful for the creation

of AMLs: an expressive type system, metaprogramming (i.e., macros) to enable novel

syntax, interoperability with shared libraries written in C, and garbage collection

(no need for manual memory management). JuMPeR depends on the JuMP package;

JuMP is itself a fully-featured AML that can model (mixed-integer) linear, quadratic,

second-order cone, semidefinite, and general nonlinear optimization problems. When

a user creates a RO model with JuMPeR, they use JuMP explicitly for the determinis-

tic parts of the problem, and implicitly through JuMPeR’s internals, which use JuMP

to formulate auxiliary cutting plane problems and to add deterministic constraints

arising from reformulations (Figure 6-1).

JuMP, and thus JuMPeR, can use the vast majority of both commercial and

popular open-source solvers. This is enabled by the MathProgBase.jl package2, which

defines a shared interface that provides an abstraction over most solver idiosyncrasies.

This interface is implemented by a variety of “thin” solver-specific packages that wrap

solver shared libraries (normally written in C) in Julia code. MathProgBase.jl and

these solver wrapper packages are all maintained together under the auspices of the

JuliaOpt organization3.

Both JuMP and JuMPeR work by composing a variety of primitives, or types, to

construct models (refer to Figure 6-2). The highest-level type, defined by JuMP, is

the Model type. A Model is a collection of decision variables (Variable), constraints

(LinearConstraint, etc.), an objective function, and other metadata such as the last

primal and dual solution (if the model has been solved). It also supports an extension

mechanism, by which packages can build on JuMP’s machinery. JuMPeR defines a

1
As described on http://julialang.org on April 1st, 2016.

2
Available at https://github.com/JuliaOpt/MathProgBase.jl.

3
See http://juliaopt.org for more information.

180

AffExpr
LinearConstraint

AdaptExpr
AdaptConstraint

UncExpr
UncSetConstraint

Variable Adaptive Uncertain

Model RobustModelExt

RobustModel

UncVarExpr
UncConstraint

+�⇥÷ Number +�⇥÷ Number +�⇥÷ Number

combinations produce

contains primitives contains primitives

Figure 6-2: Overview of JuMPeR’s type system. The red/dashed border types Model,
Variable, AffExpr are defined by JuMP, with the remainder defined by JuMPeR.
A “RobustModel” is a Model with an attached extension type RobustModelExt con-
taining the RO-specific metadata.

181

RobustModelExt type that is stored in a Model, and defines a RobustModel function

that produces a new model with this extension type already created and attached.

We now describe in Section 6.1.1 how uncertain parameters and adaptive variables are

defined, and in Section 6.1.2 we describe how these primitives combine into expressions

and constraints. A discussion of how uncertainty sets are implemented is deferred to

Section 6.2.

6.1.1 Uncertain Parameters and Adaptive Variables

JuMP defines the Variable type for constructing models, and JuMPeR introduces

two more variable-like types: Uncertain and Adaptive. An Uncertain is an uncer-

tain parameter – it can have lower and upper bounds, and is continuous by default

but can be restricted to be binary or integer:

rm = RobustModel () # Creates a new RO model

Single uncertain parameter

@uncertain(rm , 0 <= capacity <= 100)

Uncertain parameters indexed by numbers

@uncertain(rm , riskfactor [1:n])

Uncertain parameters (binary) indexed by arbitrary sets

highways = [:I90 , :I93 , :I95]

@uncertain(rm , blocked[highways], Bin)

An Adaptive is an adaptive decision variable – the value it takes is a function of

uncertain parameters. JuMPeR currently provides two simple adaptive policies by

default, but can be extended to provide others: Static and Affine. Adaptive vari-

ables must be defined in relation to the uncertain parameters that they are a function

of. In Section 6.2 we will discuss how Adaptive variables are handled when the

model is solved. Here we demonstrate two examples of adaptive variables, including

one where we can easily incorporate the temporal structure of a multistage problem.

Creates a set of adaptive variables , where each of

them is affinely dependent on all the risk factors

182

@uncertain(rm , riskfactor [1:n])

@adaptive(rm , allocation [1:n], policy=Affine ,

depends_on=riskfactor)

Create a set of adaptive variables , where each of

them is affinely dependent on the demand realized

up to the time stage when the decision is made

@uncertain(rm , 10 <= demand [1:T] <= 90)

@adaptive(rm , production[t=1:T] >= 0, policy=Affine ,

depends_on=demand [1:t-1])

We can read the last expression as “adaptive variable production[t] depends on

{demand[1],...,demand[t-1]}, for all t 2 {1, . . . , T}”.

6.1.2 Expressions and Constraints

In both JuMP and JuMPeR affine expressions are stored as lists of tuples, i.e.,

{(c1, v1), . . . , (cm, vm)}. For example, an expression of numbers and decision vari-

ables (e.g., the left-hand-side of a linear constraint), is an AffExpr, which is an

alias for GenericAffExpr{Float64,Variable} (Figure 6-2). A linear constraint

(LinearConstraint) is then a combination of an AffExpr, a sense, and a bound.

JuMPeR introduces new aliases and expression-construction machinery for handling

the following possibilities:

• UncExpr/UncSetConstraint: Affine expression/constraint of numbers and un-

certain parameters. This is used to define uncertainty sets, and the coefficients

of variables in uncertain constraints.

• AdaptExpr/AdaptConstraint: Affine expression/constraint of numbers and

adaptive variables, but no explicitly appearing uncertain parameters. These

will mostly like become uncertain constraints when the actual adaptive policy

is inserted (see Section 6.2). Examples of these can be seen in the multistage

inventory case in Section 6.3.2.

183

• UncVarExpr/UncConstraint: Affine expression/constraint where the “coeffi-

cients” are UncExpr (which includes just a number as a degenerate case), and

the “variables” are either Variable or Adapt (or a mix). This expression uni-

fies everything, and is the constraint type that is replaced with deterministic

equivalents when the problem is solved.

JuMPeR doesn’t support all possible constraint types. Notably, it does not have

support for quadratic or semidefinite constraints on uncertain parameters, nor does

it allow for constraints with uncertain parameters that are quadratic in the decision

variables (i.e., uncertain second-order cone constraints). The lack of these is not

inherent to the design of JuMPeR, and could be added in a future version. JuMPeR

does have support for expressing simple “norm” constraints on uncertain parameters,

including the 1�, 2�, and 1�norms, e.g.,

@uncertain(rm , riskfactor [1:n])

@constraint(rm , norm(riskfactor , 1) <= 1)

@constraint(rm , norm(riskfactor , 2) <= 1)

@constraint(rm , norm(riskfactor , Inf) <= 1)

These are all used in the portfolio optimization case in Section 6.3.1.

6.2 Uncertainty Sets

Perhaps the defining feature of JuMPeR is its extensible uncertainty set system.

At the heart of this system is the interaction between JuMPeR’s core solve func-

tion, and (possibly user-defined) UncertaintySet types that implement the simple

AbstractUncertaintySet interface. In this section we describe the flow of the solve

function and its interactions with uncertainty sets.

When a user calls solve, the transformation of an RO (or ARO) problem into an

deterministic problem begins. We can break this process down into five main stages:

1. Adaptive variables are “expanded”.

184

2. Uncertainty sets are notified of which constraints they must reformulate/provide

cutting planes for. They are then given the chance to complete any constraint-

independent setup.

3. Uncertainty sets are asked to reformulate their associated constraints (and can

chose to not do so).

4. Cutting planes:

• If problem has only continuous variables, solve problem with current con-

straints. Ask uncertainty sets for any new constraints. If none, terminate.

Otherwise, resolve problem and repeat.

• If problem has any discrete variables, construct lazy constraint callback

that queries uncertainty sets for any new constraints. Add lazy constraint

callback and solve.

5. If requested, obtain the worst-case uncertain parameters for each constraint

from the uncertainty sets.

Step 1 of 5: “Expanding” Adaptive Variables

The first step in the solution process is to replace all Adaptive variables with a

combination of normal Variables and uncertain parameters. This is broken down

into two phases. In the first phase, an UncVarExpr is created for each Adaptive

in the model, which will be spliced into the model wherever the adaptive variable

appears. For Static variables, this simply involves creating a new Variable with the

same bounds as the Adaptive, and setting the expression equal to this new variable.

For Affine variables, the process is slightly more involved. A new Variable pi is

created for each uncertain parameter ui that the variable depends on, as well as an

independent variable p0 – all these variables have no bounds. The expression is then

equal to p0 +
P

i uipi. To handle the bounds on the adaptive variable, up to two

constraints on this expression may be added. This is most easily understood through

the following snippet, where both versions are equivalent.

185

@defUnc(rm , u[1:n])

This ...

@defAdapt(rm , lb <= x <= ub , policy=Affine , depends_on=u)

... is equivalent to the block of code

@defVar(rm , p[1:n])

@defVar(rm , p_indep)

x = p0 + dot(p, u)

@addConstraint(rm , x >= lb)

@addConstraint(rm , x <= ub)

The second phase is then, for every constraint with an adaptive variable in it (i.e., all

AdaptConstraint and some or all of the UncConstraint), a new UncConstraint is

made with these per-Adaptive expressions inserted. If the user has a constraint with

an affine adaptive variable multiplied with an uncertain parameter, then an error will

be thrown at this point as quadratic functions of uncertain parameters and variables

are currently unsupported.

Step 2 of 5: Uncertainty Set Setup

After the Adaptive variables have been processed out, we are left with a model con-

taining only uncertain parameters and “normal” decision variables. At this point we

set up any uncertainty sets associated with the model. In this context, an uncer-

tainty set is a type that implements the AbstractUncertaintySet interface. Each

constraint can be explicitly associated with an uncertainty set, but if one is not pro-

vided then a default model-wide uncertainty set is used. During this phase of the

solution process, the uncertainty set for each UncConstraint is determined (either

the explicitly provided one, or the default), and the setup_set method is called for

each uncertainty set once. This is typically used by the set to do any work that can

be reused for multiple constraints. For example, the uncertainty set may want to

formulate the dual of the cutting plane problem for the purposes of reformulation,

or it may want to create an internal JuMP model that, when solved, will produce a

186

cutting plane.

Step 3 of 5: Reformulation

We now give each uncertainty set the chance to reformulate any of their associated

constraints. Some uncertainty sets may not support reformulation, and so will do

nothing at this step. Others might support both reformulation and cutting planes, and

will only take action at this stage if the user has passed an option to the uncertainty

set requesting that it do so – this is the case for the in-built BasicUncertaintySet.

While “reformulation” may evoke the duality-based approach commonly described

in the literature, the uncertainty set has full freedom in how it approaches this step.

The key feature is that it is done before any solving of the RO (or a relaxation of

it) takes place. For example, an uncertainty set may be defined by a finite set of

scenarios, and at this stage the uncertainty set may choose to add a deterministic

constraint for each of them.

Step 4 of 5: Cutting Planes

We now solve the current version of the RO problem (using, of course, only the de-

terministic constraints provided initially and by reformulation). If all the uncertainty

sets were doing solely reformulation, we would be done with this step. If some sets

are using cutting planes, then each uncertainty set is given the chance to return any

number of cutting planes it chooses, using the current solution. If any cutting planes

are produced, then these cuts are added and the problem is solved again. If none are

produced, then we move to the next step.

The exact details of the implementation vary depending on whether there exist

any discrete decision variables. If there are none, then the cutting planes are added

to the JuMP model and it is resolved, in a loop. This is highly efficient for any solver

that supports hot-starting using the dual simplex method, which is the case for the

majority of solvers for LO problems. If there are discrete variables, then the above

approach would be very inefficient as integer optimization solvers do not have this

“hot-start” capability. Instead, we use the “lazy constraint callback” feature that many

187

of these solvers support to integrate cutting planes into the solution process. In this

approach, the solver queries JuMPeR at each integer solution whether there any “lazy”

constraints that it is not aware of that would make the solution infeasible. JuMPeR

then asks this question of each of the uncertainty sets and manages communicating

these constraints back to the solver. For more discussion of cutting-plane methods

for MIO problems, see Chapter 2.

Step 5 of 5: “Active” Scenarios

Some algorithms, including those described in Chapter 3, require access to the worst-

case uncertain parameters at optimality. We refer to particular realizations of the

uncertain parameters as scenarios, and thus “active” scenarios are the scenarios for

which each constraint has minimal slack (or possibly zero slack, which is an active con-

straint). This final step is an optional one, and is only used if the active_scenarios

flag is passed to the solve function. If that flag is passed, then each uncertainty set

will be asked to produce at most a single scenario for each of its constraints. These

can then be accessed on a per-constraint basis by the user after the problem is solved,

similar to how dual values are accessed for normal LO problems.

6.3 Case Studies

Here we present three case studies that demonstrate different capabilities of JuMPeR:

• In Section 6.3.1, we model a simple single-stage portfolio optimization problem.

This demonstrates the basics of JuMPeR, and demonstrates how code can be

structured to easily switch between different uncertainty sets with minimal user

effort.

• In Section 6.3.2, we model a multi-stage inventory control problem. This demon-

strates how we can use affine adaptive variables (linear decision rules).

• In Section 6.3.3, we demonstrate the implementation of a specialized cutting

plane generator for “budget” polyhedral uncertainty sets.

188

6.3.1 Portfolio Construction

Our first case is a simple single-stage portfolio construction problem. We have n

assets in which we can invest, and our decision is what fraction xi � 0 of our wealth

to invest in each asset i. The return on asset i is an uncertain parameter ri, which

we model as being drawn from an uncertainty set U . This leads to the RO problem

max

x,z
z

subject to z  r

T
x 8r 2 U

1

T
x = 1

x � 0,

(6.1)

where we have introduced an auxiliary variable z that moves the uncertain objective

function min

r2U
�

r

T
x

into an epigraph constraint.

We will consider two different “data-driven” uncertainty sets that differ only in

their choice of norm. We assume that we have historical data for the returns of each

asset, allowing us to estimate their mean µ and covariance ⌃ (a matrix). The two

uncertainty sets we consider are the polyhedral set

UP =

n

(r, ⇠) | r = ⌃

1
2⇠ + µ, k⇠k1  �P , k⇠k1  1

o

, (6.2)

and the ellipsoidal set

UE =

n

(r, ⇠) | r = ⌃

1
2⇠ + µ, k⇠k2  �E

o

, (6.3)

where ⌃ 1
2 can be obtained by the Cholesky decomposition of ⌃, and where �P and �E

control the conservatism of each of the sets. We can consider these ⇠ to be underlying

market factors that induce correlations amongst the returns of the assets. If we take

a reformulation approach to solving the RO problem, then the deterministic problem

will be a linear optimization (LO) problem in the case of UP , and a second-order cone

optimization (SOCO) problem in the case of UE.

189

To demonstrate solving this problem with JuMPeR, we will create a function that

takes the past returns (as a matrix with one column per asset), the uncertainty set

type, and the value of �. We first load JuMP and JuMPeR, but will not explicitly

load any solver – instead, one will be selected automatically from the solvers that

have been installed depending on the problem class.

using JuMP , JuMPeR

We now start our function and initialize the deterministic portion of the problem,

which is a direct translation of the mathematical description in Equation (6.1). Note

the use of non-Latin characters, such as �: this is fully supported by Julia and is

commonly used for mathematical code such as this. Apart from RobustModel, which

is defined by JuMPeR, this following lines are using the functionality of JuMP.

function solve_portfolio(n, past_returns , set_type , �)

m = RobustModel ()

@variable(m, 0 <= x[1:n] <= 1)

@constraint(m, sum(x) == 1)

@variable(m, z)

@objective(m, Max , z)

Before constructing the uncertainty set we need to extract µ and ⌃ from the return

data, and calculate ⌃

1
2 (which is called L in the code).

µ = vec(mean(past_returns , 1)) # Column mean , as vector

⌃ = cov(past_returns)

L = full(chol(⌃))’ # Lower Cholesky factor , as matrix

We now use JuMPeR to create the uncertainty set, which has four components. First,

we define the uncertain parameters r that appear directly in the model. Second, we

define the underlying factor uncertain parameters ⇠. Third, we connect r and ⇠

through µ and ⌃

1
2 . Finally, we apply norm constraints on the factors.

@uncertain(m, r[1:n])

@uncertain(m, ⇠[1:n])

190

@constraint(m, r .== L*z + µ)

if set_type == :Polyhedral

@constraint(m, norm(z, 1) <= �) # kzk1  �

@constraint(m, norm(z, Inf) <= 1) # kzk1  �

else

@constraint(m, norm(z, 2) <= �) # kzk2  �

end

We then link the uncertain parameters r with decision variables x and z, and solve the

model. Internally, JuMPeR will reformulate the problem to a deterministic problem

and hand it off to a solver. We return the asset allocation and end the function.

@constraint(m, z <= dot(r, x))

solve(m)

return getvalue(x)

end # function

By arranging the code in a function we are able to easily evaluate the model

for a variety of parameters, and embed the robust optimization model into complex

simulations and software. This also demonstrates the smooth transition between

a deterministic model and a robust model: we can simply replace the uncertainty

set code with r = µ and vice versa, staying with the same modeling and solver

infrastructure. This is in contrast to RO-only modeling tools like ROME.

6.3.2 Multistage Inventory Control

In our second case, we show the implementation of the multistage inventory control

problem described by Ben-Tal et al. [2004]. In this problem, we must determine

production levels at each factory i and time period t for a single product across a T

period planning horizon. All demand must be satisfied, and there are constraints on

the total amount of production at each time period and the amount of inventory we

can store. The deterministic optimization model, in the notation of Ben-Tal et al.

191

[2004], is

min

p
i

(t),F
F

subject to
T
X

t=1

I
X

i=1

ci(t)pi(t)  F

0  pi(t)  Pi(t), 8i 2 {1, . . . , I}, t 2 {1, . . . , T}
T
X

t=1

pi(t)  Qi 8i 2 {1, . . . , I}

Vmin  v(1) +
t
X

s=1

I
X

i=1

pi(s)�
t
X

s=1

ds  Vmax 8t 2 {1, . . . , T},

(6.4)

where pi(t) is the amount produced of the product at a factory i at time t, ci(t) is

the unit cost of production at the same, Pi(t) is the production capacity for factory

i, Qi is the cumulative production capacity, and Vmin and Vmax are the minimum and

maximum total inventory limits. In the robust setting the demand dt is an uncertain

parameter, and the production decisions at time t can be made with full knowledge

of the demand realized at time periods 1, . . . , t � 1. In Ben-Tal et al. [2004] the

demand belongs to a box uncertainty set, and the adaptive production decisions are

approximated with an affine adaptability policy, also known as a linear decision rule:

pi(t) = �0
i,t +

t�1
X

r=1

�r
i,tdr,

where �r
i,t are auxiliary variables that define the policy.

We will solve an instance of this model using the same parameters as in Ben-Tal

et al. [2004]. As before we must first load JuMP and JuMPeR. We then define the

parameters, which is (JuMPeR-independent) standard Julia code.

using JuMP , JuMPeR

I = 3 # Number of factories

T = 24 # Number of time periods

Nominal demand

192

d_nom = 1000*[1 + 0.5* sin(⇡*(t -1)/12) for t21:T]

✓ = 0.20 # Uncertainty level

↵ = [1.0, 1.5, 2.0] # Production costs

c = [↵[i]*(1 + 0.5* sin(⇡*(t -1)/12)) for i21:I, t21:T]

P = 567 # Maximimum production per period

Q = 13600 # Maximumum production overall

Vmin = 500 # Minimum inventory at warehouse

Vmax = 2000 # Maximum inventory at warehouse

v1 = Vmin # Initial inventory

We can now initialize our model and the uncertain parameters, which belong to a

simple box uncertainty set where each uncertain parameter falls in a interval.

rm = RobustModel ()

@uncertain(rm , d_nom[t]*(1-✓) <= d[t=1:T] <= d_nom[t]*(1+✓))

To define the adaptive production decisions pi(t) we can use Adaptive variables,

which only require that we define what uncertain parameters the variable should be

a function of, and the structure of the policy (in this case, affine).

@adaptive(rm , 0 <= p[i=1:I,t=1:T] <= P,

policy=Affine , depends_on=d[1:t-1])

We can read the above line of code as “adaptive variable p[i,t], which belongs to

the model rm, is an affine function of uncertain parameters d[1] through d[t-1]”.

We next define an auxiliary variable F to represent the objective function value, and

constrain it as in the Equation (6.4) above.

@variable(rm , F) # Overall cost

@objective(rm , Min , F)

@constraint(rm , F >= sum{c[i,t]*p[i,t], i=1:I, t=1:T})

Note that while the objective function constraint doesn’t explicitly include any un-

certain parameters, as p[i,t] is a function of d this constraint will be handled as an

uncertain constraint when transforming the problem later. The remaining tasks are

193

to constrain the total production to respect the cumulative limit, and to ensure we

do not exceed the inventory limits. All these constraints are uncertain constraints, as

they include d explicitly or implicitly (as part of the production decision).

for i in 1:I

@constraint(rm , sum{p[i,t], t=1:T} <= Q)

end

for t in 1:T

@constraint(rm , v1 + sum{p[i,s], i=1:I, s=1:t}

- sum{d[s], s=1:t} >= Vmin)

@constraint(rm , v1 + sum{p[i,s], i=1:I, s=1:t}

- sum{d[s], s=1:t} <= Vmax)

end

Finally, we solve the problem. By default the BasicUncertaintySet will be used to

reformulate the problem, but if we pass the prefer_cuts=true option then cutting

planes will be used instead.

solve(rm , prefer_cuts=true)

println(getobjectivevalue(rm))

6.3.3 Specialized Uncertainty Set (Budget)

To this point we have demonstrated the use of common polyhedral or ellipsoidal un-

certainty sets. However, more exotic uncertainty sets have been proposed in the lit-

erature, including the “data-driven” sets described by Bertsimas et al. [2013a]. Many

of those sets have complex descriptions that arise from applying different hypothesis

tests to the provided data. The choice of test has a large impact on the computational

practicality of the set: some tests correspond to simple box sets, while others require

exponential cones (which are supported by few solvers). Intriguingly, some of the sets

admit very simple cutting plane generation algorithms – either closed-form formulae,

or the solution of a line search problem.

194

As detailed in Section 6.2, JuMPeR defines a simple interface that a researcher

can implement for a new set, and can choose to generate cutting planes however is

most efficient. Unfortunately, the implementation of the more interesting uncertainty

sets in Bertsimas et al. [2013a] is too long for inclusion here. We instead present the

implementation of a specialized BudgetUncertaintySet, that provides an efficient

cutting plane method for the family of uncertainty sets

U(µ,�,�) = {(⇠, z) | ⇠i = µi + �izi, kzk1  �, kzk1  1} . (6.5)

This set was initially proposed by Bertsimas and Sim [2004] (albeit not in this exact

form), and the cutting plane method for this set is described in Chapter 2.

To begin defining a new uncertainty set, we must first construct a Julia type that

extends (<:) JuMPeR’s AbstractUncertaintySet. This type stores the parameters

µ, �, and � that define the set, as well as the violation ✏ required to add a new

constraint.

type BudgetUncertaintySet <: JuMPeR.AbstractUncertaintySet

�::Int

µ:: Vector{Float64}

�:: Vector{Float64}

✏:: Float64

end

There is a method that we take no action in, but must be defined to complete the

interface for our new type: setup_set. This is called by the main solve function

once per uncertainty set to let it know what constraints it has been associated with.

As we do not need to do any per-constraint preparation or setup, we simply define a

method that does and returns nothing.

setup_set(us:: BudgetUncertaintySet , ...) = nothing

We can now implement the core of the cutting plane method. We will define a function

that, given the uncertainty set and an uncertain constraint, will return the values for

195

the uncertain parameters in that constraint that reduce the slack as much as possible.

That is, for a constraint

X

j

�

⇠Taj + āj
�

xj + ⇠Ta0
j  b, (6.6)

find the values of ⇠ such that the left-hand-side is maximized. To do so, we first

rearrange the terms and accumulate the coefficients for each ⇠i at the current value

of x in the master problem, i.e.,

X

i

a0,i +
X

j

aj,ixj+

!

⇠i +
X

j

ājxj  b. (6.7)

As ⇠i = µi + �izi, we can further rearrange the constraint to isolate only the compo-

nents that involve z – we say that the rest is the nominal part of the constraint:

X

i

a0,i +
X

j

aj,ixj+

!

�izi +
X

i

a0,i +
X

j

aj,ixj+

!

µi +

X

j

ājxj  b. (6.8)

function get_worst_case(us:: BudgetUncertaintySet , con)

Collect the coefficients for each uncertain parameter ,

as well as the nominal part

unc_x_vals = zeros(length(us.µ))

nominal_value = 0.0

For every variable term in the constraint ...

for (unc_expr , var) in linearterms(con.terms)

Get the value of xj in the current solution

x_val = getvalue(var)

unc_expr is ⇠Taj for xj. We need

to iterate over this expression as well.

for (coeff , unc) in linearterms(unc_expr)

nominal_value += coeff * us.µ[unc.id] * x_val

unc_x_vals[unc.id] += coeff * x_val

196

end

The deterministic part āj

nominal_value += unc_expr.constant * x_val

end

The ⇠Ta0
j term

for (coeff , unc) in linearterms(con.terms.constant)

nominal_value += coeff * us.µ[unc.id]

unc_x_vals[unc.id] += coeff

end

nominal_value += con.terms.constant.constant

We now scale the x values by the “deviations” �, and take the absolute values of the

result as we need to rank the uncertain parameters by the magnitude of this quantity.

The uncertain parameters with the largest magnitudes should be set to their upper

or lower bounds, as doing so has the largest effect on the left-hand-side of the original

uncertain constraint.

scaled_vals = abs(unc_x_vals) .* us.�

Obtain the permutation vector of the indices as if

we had sorted by the magnitudes. Take the top �.

max_inds = sortperm(scaled_vals)[(end - us.� + 1): end]

Given the uncertain parameters we should set to their bounds, we can easily calculate

the effect of doing so. We will use this later to determine if we should add a new

constraint or not.

cut_value = nominal_value + sum(scaled_vals[max_inds])

Finally, we determine the actual values of the uncertain parameters that achieve this

value. We determine which bound to by observing the sign of the coefficients on

each ⇠i: if they are positive, then setting the uncertain parameter to its upper bound

should maximize the left-hand-side, and if they are negative then setting the uncertain

parameter to its lower bound should do the same.

unc_values = copy(us.µ)

197

for i in max_inds

if unc_x_vals[i] > 0

unc_values[i] += us.�[i] # Push up , LHS goes up

else

unc_values[i] -= us.�[i] # Push down , LHS goes up

end

end

return cut_value , unc_values

end # function

Given this function, we can complete the JuMPeR uncertainty set interface. The

generate_cut function receives a list of constraints and the model, and iterates

through these constraints trying to generate new constraints using the function we

just defined. Finally, we do not provide reformulation support for this uncertainty set,

as it would be no different from the generic duality-based reformulation supported by

BasicUncertaintySet (which we used by default for the other constraints).

function generate_cut(us:: BudgetUncertaintySet ,

rm::Model , idxs:: Vector{Int})

Extract the RobustModelExt from the JuMP model

This contains all the RO -specific information

rmext = get_robust(rm):: RobustModelExt

The vector of new constraints we will add

new_cons = Any[]

For each constraint we need to generate a cut for

for idx in idxs

Get the uncertain constraint object

con = rmext.unc_constraints[idx]

Determine worst -case uncertain parameters

cut_value , unc_values = get_worst_case(us , con)

Use a utility function from uncsets_util.jl

198

to check violation status

if check_cut_status(con , cut_value , us.✏) != :Violate

No violation , no new cut

continue # try next constraint

end

Build a deterministic constraint from the

uncertain constraint by filing in values

new_con = build_certain_constraint(con , unc_values)

push!(new_cons , new_con)

end

return new_cons

end # function

generate_reform(us:: BudgetUncertaintySet , ...) = nothing

6.4 Comparisons with Other Tools

JuMPeR is not the first AML that has support for RO. In this section, we describe

five alternatives, and contrast their capabilities versus JuMPeR (summarized in Ta-

ble 6.1). The two most commonly used RO AMLs are YALMIP [Löfberg, 2012]

and ROME [Goh and Sim, 2011]. Both are implemented in MATLAB, and support

many key features, including polyhedral and ellipsoidal uncertainty set reformula-

tions. There is one commercial package with support for RO, AIMMS, and a further

two more experimental frameworks that are implemented in C++: ROPI [Goerigk,

2014] and ROC [Bertsimas et al., 2016].

One of the key features for any AML is usability. AIMMS, as a dedicated stan-

dalone modeling language, does well in this regard as it has full flexibility in its syntax.

YALMIP and ROME are embedded in MATLAB, but have intuitive syntax that is

readable by a novice. Additionally, as MATLAB is a dynamic language, there is no

need for complex memory management or a compilation stage. ROPI and ROC are

199

N
am

e
JuM

PeR
YA

LM
IP

R
O

M
E

A
IM

M
S

R
O

P
I

R
O

C

Availability
Free

(M
P

L2.1)
Free

(custom
)

Free
(G

P
Lv3)

C
om

m
ercial

Free
(M

IT
)

Free
(unknow

n)

Language
Julia

M
AT

LA
B

M
AT

LA
B

Standalone
C

+
+

C
+

+

G
eneral?

Yes
(JuM

P
)

Yes
N

o
Yes

N
o

N
o

Solvers
M

any
M

any
SD

P
T

3,
M

O
SE

K
,

C
P

LE
X

M
any

C
P

LE
X

,
G

urobi,
X

press
C

P
LE

X

U
ncertainty

sets

Polyhedral,
ellipsoidal,

custom
user-extensible

Polyhedral,
ellipsoidal,
conic,...

Polyhedral,
ellipsoidal,

D
R

O

B
ox,

ellipsoidal,
convex

hull,
chance

constraints

Scenario
sets,

“light”
robustness

Polyhedral,
ellipsoidal,

D
R

O

C
utting

planes
for

(M
I)LO

Yes
N

o
N

o
N

o
N

o
N

o

A
daptive

optim
ization

LD
R

N
one

D
eflected

LD
R

LD
R

N
A

LD
R

Table
6.1:

R
O

m
odeling

language
com

parison.
“Language”

refers
to

the
host

language
for

the
m

odeling
language.

“G
eneral”

refers
to

w
hether

the
language

can
be/is

intended
to

be
used

for
a

variety
of

problem
s,

especially
determ

inistic
problem

s.
“C

utting
planes”

refers
to

w
hether

the
language

has
support

for
cutting

plane
approaches

to
R

O
,

including
for

robust
M

IO
problem

s.

200

both implemented as C++ libraries, which has less elegant syntax, manual memory

management, and requires a separate compilation step – all factors which slow pro-

totyping and development. JuMPeR is most similar to YALMIP and ROME, in that

it is embedded in a high-level dynamic language and must make some minor syntax

concessions as a result. The following snippet demonstrates a simple RO problem in

ROME, taken from the ROME documentation:

h = rome_begin (’simple ’);

newvar x y; % Set up modeling variables

newvar z uncertain; % scalar uncertainty

rome_box(z , 1.5 , 2.5); % and its support

rome_maximize (12 * x + 15 * y); % objective function

rome_constraint(x + z*y <= 40);

rome_constraint (4*x + 3*y <= 120);

rome_constraint(x >= 0);

rome_constraint(y >= 0);

h.solve;

rome_end;

The JuMPeR equivalent of this code is as follows:

h = RobustModel ()

@variable(h, x >= 0)

@variable(h, y >= 0)

@uncertain(h, 1.5 <= z <= 2.5)

@objective(h, Max , 12x + 15y)

@constraint(h, x + z*y <= 40)

@constraint(h, 4x + 3y <= 120)

solve(h)

Related to usability is the notion of generality. By this, we mean that a user can

use the AML for more than just RO. All the tools here can be used for deterministic

problems, but some were made solely for the purpose. We would suggest that a

201

language that is solely made for the purposes of RO will generally be less suitable for

deterministic problems than a language that is more general by design. In particular,

we claim that YALMIP, JuMPeR and AIMMS are all have this property of generality,

with JuMPeR inheriting all the features of JuMP. In all three of these tools, a user

can begin with a deterministic model before smoothly transitioning to a RO model.

This correlates with solver support: these three languages support a very wide variety

of solvers, as they all have a base infrastructure for communicating with them that

is painful to build for a dedicated RO modeling tool.

Finally, the six languages all vary significantly in what aspects of RO and adaptive

RO they support. JuMPeR is the only language with first-class support for cutting

planes so far. All but ROPI support polyhedral and ellipsoidal sets, while only ROME,

AIMMS, and ROC have support for “distributionally robust” sets built in. In terms

of more complicated uncertainty sets, JuMPeR’s general framework for uncertainty

sets and YALMIPs very general reformulation capabilities stand apart from the rest.

Finally, JuMPeR, ROME, AIMMS, and ROC all support linear decision rules, with

ROME going a step further and offering deflected linear decision rules as well.

We conclude from this comparison that JuMPeR is a valuable contribution to the

landscape of RO modeling tools. It is particularly suited for problems that are linear

in the decision variables, and for adaptive optimization problems. The cutting plane

support makes it the best choice for many kinds of RO problems, and a good platform

for conducting research into new uncertainty sets.

202

