Functions

Clausen functions

The Clausen function is given by

\[Cl_2(\phi)=-\int_0^\phi \log|2\sin(x/2)| \, \text{d}x\]

using Plots, FewSpecialFunctions, LaTeXStrings

x = range(0,15,1000)
xlabel!(L"ϕ")
title!("Clausen function")
plot(x,Clausen.(x), label=L"Cl_2(ϕ)")

Clausen function

Debye functions

The Debye functions are given by

\[ D_n(x)= \frac{n}{x^n} \int_0^x \frac{t^n}{\text{e}^t-1} \, \text{d}x\]

And

using Plots, FewSpecialFunctions, LaTeXStrings

x = range(0,25,1000)
plot(x,Debye_function.(1,x),label=L"D_1(x)")
plot!(x,Debye_function.(2,x),label=L"D_2(x)")
plot!(x,Debye_function.(3,x), label=L"D_3(x)")
title!("Debye Functions")
xlabel!(L"x")

Regular Coulomb wave functions

The Coulomb wave equation for a charged particle with arbitrary angular momentum and charge is given by

\[ \nabla^2\psi +\left( k^2-\frac{2\mu}{\hbar^2}V(r)\right)\psi = 0,\]

where $\mu$ is the reduced mass of the system. The radial wave function $u(r)$ satisfies the following differential equation

\[ \frac{\text{d}^2 u_\ell}{\text{d}r^2}+\left( k^2-\frac{\ell(\ell+1)}{r^2}-\frac{2\mu}{\hbar^2}\frac{Ze^2}{r}\right)u_\ell=0,\]

where $Z$ is the product of the charges. Two independent solutions can be found to this equation – these are called the regular and irregular Coulomb wave functions denoted $F_\ell(r)$ and $G_\ell(r)$ respectively. The regular Coulomb wave function $F_\ell(r)$ is a real function that vanishes at $r=0$ and the behaviour of the function is described using a parameter $\eta$ which describes how strongly the Coulomb interaction is

\[ \eta = \frac{Zmc\alpha }{\hbar k},\]

where $m$ is the mass of the particle, $k$ is the wave number and $\alpha$ is the fine structure constant. The solution to is given by

\[ F_\ell(\eta,kr) = C_\ell (\eta) (kr)^{\ell+1}\text{e}^{-ikr} {}_1 F_1(\ell+1-i\eta,2\ell+2,2ikr),\]

where ${}_1F_1(kr)$ is a confluent hypergeometric function and $C_\ell(\eta)$ is a normalization constant given by

\[ C_\ell(\eta) = \frac{2^\ell \text{e}^{-\pi\eta/2}|\Gamma(\ell+1+i\eta)|}{(2\ell+1)!},\]

where $\Gamma$ is the gamma function. For numerical purposes, it is useful to use the integral representation of the regular Coulomb wave function

\[ F_\ell(\eta,\rho) = \frac{\rho^{\ell+1}2^\ell e^{i\rho-(\pi\eta/2)}}{|\Gamma(\ell+1+i\eta)|} \int_0^1 e^{-2i\rho t}t^{\ell+i\eta}(1-t)^{\ell-i\eta} \, \text{d}t.\]

This implementation need the gamma function from SpecialFunctions.jl

using Plots, FewSpecialFunctions, LaTeXStrings

x = range(0,25,1000)
plot(x,regular_coulomb.(0,0.3,x), label=L"F_0(0.3,ρ)")
plot!(x,regular_coulomb.(0,-0.3,x), label=L"F_0(-0.3,ρ)")
xlabel!(L"ρ")
title!("Regular Coulomb Wave Functions")

Use a similar approach to plot the regular Coulomb functions for different a $\ell$

using Plots, FewSpecialFunctions, LaTeXStrings

x = range(0,25,1000)
plot(x,regular_coulomb.(1e-5,5,x), label=L"F_0(5,ρ)")
plot!(x,regular_coulomb.(1,5,x), label=L"F_1(5,ρ)")
plot!(x,regular_coulomb.(2,5,x), label=L"F_2(5,ρ)")
plot!(x,regular_coulomb.(3,5,x), label=L"F_3(5,ρ)")
title!("Regular Coulomb Wave Functions")
xlabel!(L"ρ")

Struve functions

The Struve functions are solutions of the non-homogeneous Bessel's differential equation

\[ x^2 \frac{\text{d}^2 y}{\text{d}x^2} + x \frac{\text{d}y}{\text{d}x}+(x^2-\alpha^2)y = \frac{4(x/2)^{\alpha+1}}{\sqrt{\pi}\Gamma(\alpha+1/2)}\]

The Struve functions are implemented using the following integral representation

\[ \mathbf{H}_\nu(z) = \frac{2(z/2)^\nu}{\sqrt{\pi}\Gamma(\nu+1/2)} \int_0^1 (1-t)^{{\nu-1/2}}\sin(zt) \, \text{d}t\]

And

\[ \mathbf{H}_\nu(z) = \frac{2(z/2)^\nu}{\sqrt{\pi}\Gamma(\nu+1/2)} \int_0^{\pi/2} \sin(z\cos(\theta)) \sin^{2\nu}(\theta) \, \text{d}\theta\]

Here is an example

using Plots, FewSpecialFunctions, LaTeXStrings

x = range(-5,5,1000)
plot(x,Struve.(0,x),label=L"H_0(x)")
plot!(x,Struve.(1,x),label=L"H_1(x)")
plot!(x,Struve.(2,x),label=L"H_2(x)")
plot!(x,Struve.(3,x),label=L"H_3(x)")
plot!(x,Struve.(4,x),label=L"H_4(x)")
plot!(x,Struve.(5,x),label=L"H_5(x)")
xlabel!(L"x")
title!("Struve Functions")

Fresnel functions

The Fresnel functions are both implemented using the trigonometric functions and the error function.

\[ S(z) = \int_0^x \sin(t^2) \, dt = \sqrt{\frac{\pi}{2}} \frac{1+i}{4} \left[ \erf \left(\frac{1+i}{\sqrt{2}}z \right) - i \erf \left(\frac{1-i}{\sqrt{2}}z \right]\]

And

\[ C(z) = \int_0^x \cos(t^2) \, dt = \sqrt{\frac{\pi}{2}} \frac{1-i}{4}\left[ \erf \left(\frac{1+i}{\sqrt{2}}z \right) + i \erf \left(\frac{1-i}{\sqrt{2}}z\right]\]

The two implementations are shown in the examples below

using Plots, FewSpecialFunctions, LaTeXStrings

x = range(-25,25,5000)
plot(x,Fresnel_C_integral.(x),label=L"C(x)")
plot!(x,Fresnel_C_erf.(x), ls=:dash, lw=1.5, label=L"\tilde{C}(x)")
title!("Fresnel Integral")
xlabel!(L"x")

and

using Plots, FewSpecialFunctions, LaTeXStrings

x = range(-25,25,5000)
plot(x,Fresnel_S_integral.(x),label=L"S(x)")
plot!(x,Fresnel_S_erf.(x), ls=:dash, lw=1.5, label=L"\tilde{S}(x)")
title!("Fresnel Integral")
xlabel!(L"x")

Benchmarks

Comparison between the two implementations

using FewSpecialFunctions, BenchmarkTools

x = range(0,150,1000)

@benchmark Fresnel_C_erf.($x)
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
 Range (min … max):   98.750 μs … 159.750 μs  ┊ GC (min … max): 0.00% … 0.00%
 Time  (median):      99.209 μs               ┊ GC (median):    0.00%
 Time  (mean ± σ):   100.458 μs ±   2.955 μs  ┊ GC (mean ± σ):  0.00% ± 0.00%

  ▆█▆▃▅▆▄▃▁▁    ▂▁  ▂▁▁ ▁▁▂▁▁  ▁                                ▂
  ███████████▇██████████████████████▇███████▇▇▇▆▆▅▆▅▄▅▅▅▄▄▄▄▅▅▅ █
  98.8 μs       Histogram: log(frequency) by time        111 μs <

 Memory estimate: 7.94 KiB, allocs estimate: 1.

Using the error function

using FewSpecialFunctions, BenchmarkTools

@benchmark Fresnel_C_integral.($x)
BenchmarkTools.Trial: 6 samples with 1 evaluation.
 Range (min … max):  897.665 ms … 934.645 ms  ┊ GC (min … max): 0.94% … 0.93%
 Time  (median):     905.692 ms               ┊ GC (median):    0.95%
 Time  (mean ± σ):   908.576 ms ±  13.612 ms  ┊ GC (mean ± σ):  1.02% ± 0.17%

  ██       █       ██                                         █  
  ██▁▁▁▁▁▁▁█▁▁▁▁▁▁▁██▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
  898 ms           Histogram: frequency by time          935 ms <

 Memory estimate: 160.72 MiB, allocs estimate: 5915.

Hypergeometric functions