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1 The FRBNY DSGE model: SW original model

1.1 Model

In this section we describe in detail the Smets and Wouters (2007) model, henceforth

SW), and emphasize the differences with the DSSW model.

1.1.1 Intermediate firms

We follow SW and assume the production function to be:

Yt(i) = max{ez̃tKt(i)
α
(
Lt(i)e

γt
)1−α − Φe(γ+ α

1−α log Υ)t, 0}, (1.1)

where

z̃t = ρz z̃t−1 + σzεz,t, εz,t ∼ N(0, 1) (1.2)

(Note that what SW call “γ” in our notation is eγ , and that they assume Υ = 1.) SW

assume that productivity z̃t is stationary. Define Zt as follows:

lnZt =
1

1− α
z̃t. (1.3)

For ρz ∈ (0, 1) the process lnZt is stationary, as in SW. For ρz = 1 it follows a random

walk. This specification accomodates both. Note that we can rewrite the production

function as:

Yt(i) = max{Kt(i)
α (Lt(i)Zt)

1−α − Φe−
1

1−α z̃tZte
(γ+ α

1−α log Υ)t, 0}. (1.4)

Cost minimization subject to 1.4 yields the conditions:

(∂Lt(i)) Vt(i)(1− α)Z1−α
t Kt(i)

αLt(i)
−α = Wt

(∂Kt(i)) Vt(i)αZ1−α
t Kt(i)

α−1Lt(i)
1−α = Rkt

where Vt(i) is the Lagrange multiplier associated with 1.1.8. In turn, these conditions

imply:
Kt(i)

Lt(i)
=

α

1− α
Wt

Rkt
.
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Note that if we integrate both sides of the equation wrt di and define Kt =

∫
Kt(i)di

and Lt =

∫
Lt(i)di we obtain a relationship between aggregate labor and capital:

Kt =
α

1− α
Wt

Rkt
Lt. (1.5)

Total variable cost is given by

Variable Costs = (Wt +Rkt
Kt(i)

Lt(i)
)Lt(i)

= (Wt +Rkt
Kt(i)

Lt(i)
)Ỹt(i)Z

−(1−α)
t

(
Kt(i)

Lt(i)

)−α
,

where Ỹt(i) = Z1−α
t Kt(i)

αLt(i)
1−α is the “variable” part of output. The marginal cost

MCt is the same for all firms and equal to:

MCt = (Wt +Rkt
Kt(i)

Lt(i)
)Z
−(1−α)
t

(
Kt(i)

Lt(i)

)−α
= α−α(1− α)−(1−α)W 1−α

t Rk αt Z
−(1−α)
t .

(1.6)

[TO DO WITH KIMBALL] Prices are sticky as in Calvo (1983). Specifically, each

firm can readjust prices with probability 1 − ζp in each period. We depart rfom Calvo

(1983) in assuming that for those firms that cannot adjust prices, Pt(i) will increase at

the geometric weighted average (with weigths 1 − ιp and ιp, respectively) of the steady

state rate of inflation π∗ and of last period’s inflation πt−1. For those firms that can

adjust prices, the problem is to choose a price level P̃t(i) that maximizes the expected

present discounted value of profits in all states of nature where the firm is stuck with

that price in the future:

max
P̃t(i)

Ξpt

(
P̃t(i)−MCt

)
Yt(i)

+ Et

∞∑
s=1

ζspβ
sΞpt+s

(
P̃t(i)

(
Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
−MCt+s

)
Yt+s(i)

s.t. Yt+s(i) =

 P̃t(i)
(

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

−
1+λf,t+s
λf,t+s

Yt+s,

(1.7)

where βsΞpt+s is today’s value of a future dollar for the consumers (Ξpt+s is the Lagrange

multiplier associated with the consumer’s nominal budget constraint - remember there
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are complete markets so βsΞpt+s is the same for all consumers). The FOC for the firm is:

Ξpt

(
P̃t(i)

Pt

)− 1+λf,t
λf,t

−1
1

λf,tPt

(
P̃t(i)− (1 + λf,t)MCt

)
Yt(i)+

Et

∞∑
s=0

ζspβ
sΞpt+s

 P̃t(i)
(

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

−
1+λf,t+s
λf,t+s

−1 (
Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
λf,t+sPt+s(

P̃t(i)
(

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
− (1 + λf,t+s)MCt+s

)
Yt+s(i) = 0

(1.8)

Note that all firms readjusting prices face an indentical problem. We will consider only

the symmetric equilibrium in which all firms that can readjust prices will choose the

same P̃t(i), so we can drop the i index from now on. From 1.1.6 it follows that:

Pt = [(1− ζp)P̃
− 1
λf

t + ζp(π
ιp
t−1π

1−ιp
∗ Pt−1)

− 1
λf ]−λf . (1.9)

1.1.2 Households

Household j’s utility is (as opposed to 1.1.16):

IEt

∞∑
s=0

βs
[

1

1− σc
(Ct+s(j)− hCt+s−1)1−σc

]
exp

(
σc − 1

1 + νl
Lt+s(j)

1+νl

)
(1.10)

where Ct(j) is consumption, Lt(j) is labor supply. Three observations are in order

regarding this utility function. First, utility is increasing in consumption and leisure

regardless of the value of σc. Second, there are no “discount rate” or “leisure” shocks in

the utility function. Third, SW have external (as opposed to internal) habit.

The household’s budget constraint, written in real terms, is given by:

Ct+s(j) + It+s(j) +
Bt+s(j)

bt+sRt+sPt+s
≤ Bt+s−1(j)

Pt+s

+
W h
t+s

Pt+s
Lt+s(j) +

(
Rkt+s
Pt+s

ut+s(j)K̄t+s−1(j)− a(ut+s(j))Υ
−tK̄t+s−1(j)

)
+ Πt+s − Tt+s,

(1.11)

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nominal

interest rate paid on government bonds, Πt is the per-capita profit the household gets

from owning firms (assume household pool their firm shares, Tt+s is lump-sum taxes, so
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that they all receive the same profit) W h
t (j) is the wage earned by household j. bt is

a “risk premium shock”. The term within parenthesis represents the return to owning

K̄t(j) units of capital. Households choose the utilization rate of their own capital, ut(j),

and end up renting to firms in period t an amount of “effective” capital equal to:

Kt(j) = ut(j)K̄t−1(j), (1.12)

and getting Rkt ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization

in terms of the consumption good which is equal to a(ut(j))Υ
−tK̄t−1(j). Households

accumulate capital according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + Υtµt

(
1− S(

It(j)

It−1(j)
)

)
It(j), (1.13)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S′(·) > 0, S′′(·) > 0. The term µt is a stochastic disturbance to the price of investment

relative to consumption

Households are all identical, so the j subscript is pretty redundant except for the

fact that we have external habits. We will drop the j subsequently.

The FOCs for consumption, bonds, and labor are:

(∂Ct(j)) (Ct − hCt−1)−σc exp

(
σc − 1

1 + νl
L1+νl
t

)
= Ξt (1.14)

(∂Bt(j)) Ξt = βRtbtIEt[
Ξt+1

πt+1
] (1.15)

(∂Lt(j)) (Ct − hCt−1)1−σc exp

(
σc − 1

1 + νl
L1+νl
t

)
Lνlt = Ξt

W h
t

Pt
. (1.16)

Note that households take W h
t as given and maximize with respect to Lt. The wage

stickiness part will be discussed below. Using 1.14 we can rewrite 1.16 as:

(Ct − hCt−1)Lνlt =
W h
t

Pt
. (1.17)

Let us now address the capital accumulation/utilization problem. Call Ξkt the La-

grange multiplier associated with constraint 1.13. The FOC with respect to investment,
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capital, and capital utilization are:

(∂It) ΞktΥ
tµt

(
1− S(

It
It−1

)− S′( It
It−1

)
It
It−1

)
+ βIEt[Ξ

k
t+1Υt+1µt+1S

′(
It+1

It
)(
It+1

It
)2] = Ξt (1.18)

(∂K̄t) Ξkt = βIEt[Ξt+1(
Rkt+1

Pt+1
ut+1 − a(ut+1)Υ−(t+1)) + Ξkt+1(1− δ)] (1.19)

(∂ut) ΥtR
k
t

Pt
= a′(ut) (1.20)

The first FOC is the law of motion for the shadow value of capital. Note that if adjust-

ment cost were absent, the FOC would simply say that ΞktΥ
tµt is equal to the marginal

utility of consumption. In other words, in absence of adjustment costs the shadow cost

of taking resources away from consumption equals the shadow benefit (abstracting from

Υtµt) of putting these resources into investment: Tobin’s Q is equal to one. The second

FOC says that if I buy a unit of capital today I have to pay its price in real terms, Ξkt ,

but tomorrow I will get the proceeds from renting capital, plus I can sell back the capital

that has not depreciated. Define Qkt =
Ξkt
Ξt

. Qkt has the interpretation of the value of

installed capital relative to consumption goods (i.e., Tobin’s Q). Then condition 1.19 can

be rewritten as:

Qkt = βIEt

[
Ξt+1

Ξt

(
Rkt+1

Pt+1
ut+1 − a(ut+1)Υ−(t+1) +Qkt+1(1− δ)

)]
. (1.21)

1.1.3 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in

response to deviations of inflation and output from their respective target levels:

Rt
R∗

=

(
Rt−1

R∗

)ρR (πt
π∗

)ψ1
(
Yt

Y f
t

)ψ2
1−ρR (

Yt
Yt−1

Y f
t−1

Y f
t

)ψ3

er
m
t (1.22)

where the parameter ρR determines the degree of interest rate smoothing, R∗ is the

steady state nominal rate and Y f
t is output under flexible/prices and wages. Note that

policy reacts to both level differences between Yt and Y f
t (ψ2(1− ρR) coefficient) as well

as growth differences (ψ2 coefficient). Note also that the exogenours part of monetary
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policy is captured by the process rmt , which follows an autoregressive process. The cen-

tral bank supplies the money demanded by the household to support the desired nominal

interest rate.

The government budget constraint is of the form

PtGt +Bt−1 = PtTt +
Bt
btRt

, (1.23)

where Tt are nominal lump-sum taxes (or subsidies) that also appear in household’s bud-

get constraint. SW, who assume technology is stationary, express government spending

relative to the deterministic trend in output:

Gt = g̃ty∗e
z∗∗t (1.24)

where y∗ is the steady state of detrended output. Since we detrend everything (see

below) by Z∗t , we need to be careful. Define

gt =
Gt
y∗Z∗t

= g̃te
− 1

1−α z̃t . (1.25)

At steady state g̃∗ = g∗. Note the difference with DSSW, where gt =
Yt

Yt −Gt
and

g∗ =
y∗

c∗ + i∗
> 1. In SW g∗ ∈ (0, 1).

1.1.4 Resource constraints

To obtain the market clearing condition for the final goods market first integrate the HH

budge constraint across households, and combine it with the gvmt budget constraint:

PtCt + PtIt + PtGt ≤ +Πt +

∫
Wt(j)Lt(j)dj

+Rkt

∫
Kt(j)dj − Pta(ut)Υ

−t
∫
K̄t−1(j)dj.

Next, realize that

Πt =

∫
Π(i)tdi =

∫
P (i)tY (i)tdi−WtLt −RktKt,

where Lt =

∫
L(i)tdi is total labor supplied by the labor packers (and demanded by

the firms), and Kt =

∫
K(i)tdi =

∫
Kt(j)dj. Now replace the defintion of Πt into the
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HH budget constraint, realize that by the labor and goods’ packers’ zero profit condition

WtLt =

∫
Wt(j)Lt(j)dj, and PtYt =

∫
P (i)tY (i)tdi and obtain:

Ct + It + a(ut)Υ
−tK̄t−1 +Gt = Yt (1.26)

where Yt is defined by (1.1.1). The relationship between output and the aggregate

inputs, labor anc capital, is:

Ẏt =

∫
Z1−α
t Kt(i)

αLt(i)
1−αdi− Z∗t Φ

= Z1−α
t

∫
(K/L)αL(i)di− Z∗t Φ

= Z1−α
t Kα

t L
1−α
t − Z∗t Φ,

(1.27)

where I used the fact that the capital labor ratio is constant across firms (also, since

K(i) = (K/L)L(i) it must be the case that

∫
K(i)di∫
L(i)di

= Kt/Lt = (K/L)). The problem

with these resource constraints is that what we observe in the data is Ẏt =

∫
Yt(i)di and

L̇t =

∫
Lt(j)dj, as opposed to Yt and Lt. But note that from 1.1.5:

Ẏt = YtP

1+λf,t
λf,t

t

∫
P (i)

−
1+λf,t
λf,t

t di

= YtP

1+λf,t
λf,t

t Ṗ
−

1+λf,t
λf,t

t ,

where Ṗt =

(∫
Pt(i)

−
1+λf,t
λf,t di

)− λf,t
1+λf,t

, and

L̇t =

∫
Lt(j)dj

= LtW

1+λw,t
λw,t

t

∫
W (j)

− 1+λw,t
λw,t

t di

= LtW

1+λw,t
λw,t

t Ẇ
− 1+λw,t

λw,t

t ,

where Ẇt =

(∫
W (j)

− 1+λw,t
λw,t

t dj

)− λw,t
1+λw,t

.

1.1.5 Exogenous Processes

When technology is stationary or has a unit root, its process is given by 1.3, which we

report here:

z̃t = ρz z̃t−1 + σzεz,t.
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We now discuss the process for gt. SW assume a stationary process for ˆ̃gt = log(
g̃t
g∗

),

which is correlated with shocks in technology:

ˆ̃gt = ρg ˆ̃gt−1 + σgεg,t + ηgzσzεz,t. (1.28)

If technology is not stationary, this process does not make sense since ˆ̃gt is non stationary.

Hence we replace it by the assumption that ĝt = log(
gt
g∗

) is stationary

ĝt = ρg ĝt−1 + σgεg,t + ηgzσzεz,t. (1.29)

We express all remaining processes in log deviations from their steady state value,

which is assumed to be 1:

b̂t = ρbb̂t−1 + σbεb,t, (1.30)

µ̂t = ρµµ̂t−1 + σµεµ,t, (1.31)

r̂mt = ρrm r̂
m
t−1 + σrεrm,t, (1.32)

The mark-up shocks follow ARMA(1,1) processes:

λ̂f,t = ρλf λ̂f,t−1 + σλf ελf ,t − ηλfσλf ελf ,t−1, (1.33)

λ̂w,t = ρλw λ̂w,t−1 + σλwελw,t − ηλwσλwελw,t−1, (1.34)
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1.2 Detrending

SW detrend the variables by the deterministic trend eγt (or by e(γ+ α
1−α log Υ)t if there is

a trend in the relative price of capital). We detrend by

Z∗t = Zte
(γ+ α

1−α log Υ)t,Υ > 1. (1.35)

Define z∗t = log(Z∗t /Z
∗
t−1). Denote with ∗ the steady state values of the variables, and

realize that at st.st. z∗∗ = γ +
α

1− α
log Υ. From 1.2 and 1.3 we see that

ẑ∗t = z∗t − z∗∗ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t, (1.36)

and

Et[ẑ
∗
t+1] =

1

1− α
(ρz − 1)z̃t. (1.37)

Note that for ρz = 1 z̃t has no impact on ẑt.

Specifically:

ct =
Ct
Z∗t
, yt =

Yt
Z∗t
, it =

It
Z∗t
, kt = Υ−t

Kt

Z∗t
, k̄t = Υ−t

K̄t

Z∗t
,

rkt = ΥtR
k
t

Pt
, wt =

Wt

PtZ
∗
t

, wht =
W h
t

PtZ∗t
, p̃t =

P̃t
Pt
, w̃t =

W̃t

Wt
,

ξt = ΞtZ
∗σc
t , ξkt = ΞktZ

∗σc
t Υt, qkt = QktΥ

t.

(1.38)

Note that this implies that some of the equilibrium conditions will look different from

SW.

Intermediate goods producers

We start by expressing 1.6 in terms of detrended variables:

mct =
MCt
Pt

= α−α(1− α)−(1−α)w1−α
t rk αt . (1.39)

Hence

mc∗ = α−α(1− α)−(1−α)w1−α
∗ rk α∗ . (1.40)

****************** (TO BE DONE) *******************
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Expression 1.8 becomes:

ξt
λf,t

p̃
−

(1+λf,t)

λf,t
−1

t (p̃t − (1 + λf,t)mct) yt(i)

+IEt

∞∑
s=1

ζspβ
s ξt+s
λf,t+s

(
p̃t

Πs
l=1πt+l

) (1+λf,t+s)

λf,t+s
−1 (

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

) (1+λf,t+s)

λf,t+s(
p̃t

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

Πs
l=1πt+l

− (1 + λf,t+s)mct+s

)
yt+s(i) = 0

(1.41)

this implies that:

p̃∗ = (1 + λf )α−α(1− α)−(1−α)w1−α
∗ rk α∗ (1.42)

Expression ?? becomes:

1 = [(1− ζp)p̃
− 1
λf,t

t + ζp(π
ιp
t−1π

1−ιp
∗ π−1

t )
− 1
λf,t ]−λf,t . (1.43)

which means that:

p̃∗ = 1. (1.44)

Recall that aggregate profits are equal to:

Πt = PtYt −WtLt −RktKt.

In terms of detrended variables we then have :

Πt

PtZ
∗
t

= yt − wtLt − rkt kt

= kαt L
1−α
t − Φ− wtLt −

α

1− α
wtLt

=

(
(
kt
Lt

α

− 1

1− α
wt

)
Lt − Φ

=

(
(

α

1− α
)αwαt r

k −α
t − 1

1− α
wt

)
Lt − Φ

At steady state we can use 1.42 to get that st. st. profits are:

Πt

PtZ
∗
t

=
λf

1− α
w∗L∗ − Φ. (1.45)

**************************

Equation 1.5 becomes:

kt =
α

1− α
wt

rkt
Lt. (1.46)
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and at st.st.:

k∗ =
α

1− α
w∗
rk∗
L∗. (1.47)

Households

Expressions 1.14, 1.15, and 1.17 become:

ξt =
(
ct − hct−1e

−z∗t
)−σc

exp

(
σc − 1

1 + νl
L1+νl
t

)
, (1.48)

ξt = βRtbtIEt[ξt+1e
−σcz∗t+1π−1

t+1], (1.49)(
ct − hct−1e

−z∗t
)
Lνlt = wht , (1.50)

respectively. At steady state:

ξ∗ = c−σc∗ (1− he−z∗∗ )−σc exp

(
σc − 1

1 + νl
L1+νl
∗

)
, (1.51)

R∗b∗ = β−1π∗e
σcz∗∗ , (1.52)

c∗

(
1− he−z∗∗

)
Lνl∗ = wh∗ . (1.53)

Equation 1.12 and 1.13 become:

kt = utΥ
−1e−z

∗
t k̄t−1, (1.54)

k̄t = (1− δ)Υ−1e−z
∗
t k̄t−1 + µt

(
1− S(

it
it−1

ez
∗
t )

)
it. (1.55)

which deliver the steady state relationships:

k∗ = e−γΥ−
1

1−α k̄∗, (1.56)

i∗ = µ−1
(

1− (1− δ)e−γΥ−
1

1−α
)
k̄∗. (1.57)

under the assumption that S(eγΥ
α

1−α ) = 0.

Equation 1.18, 1.21, and 1.20 become:

ξkt µt

(
1− S(

it
it−1

ez
∗
t )− S′( it

it−1
ez
∗
t )

it
it−1

ez
∗
t

)
+ βIEt[e

−σcz∗t+1ξkt+1µt+1S
′(
it+1

it
ez
∗
t+1)(

it+1

it
ez
∗
t+1)2] = ξt (1.58)

qkt = βIEt

[
Υ−1e−σcz

∗
t+1

ξt+1

ξt

(
rkt+1ut+1 − a(ut+1) + qkt+1(1− δ)

)]
(1.59)

rkt = a′(ut). (1.60)
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Under the assumptions that S′(eγΥ
α

1−α ) = 0, u∗ = 1 and a(u∗) = 0, the above equations

at steady state imply

ξk∗ = ξ∗ (1.61)

rk∗ = β−1eσcz
∗
∗Υ− (1− δ) (1.62)

rk∗ = a′(u∗). (1.63)

where 1.61 implies qk∗ = 1 (note the a(.) function can be normalized so to make a′(1) be

whatever the steady state rk∗ is).

Expressed in terms of detrended variables, equation 1.1.37 becomes:

IEt

∞∑
s=0

(ζwβ)sL(j)t+sξt+s

[
− X̃t,sw̃twt + (1 + λw)

bt+sϕt+sLt+s(j)
νl

ξt+s

]
= 0, (1.64)

where

X̃t,s =


1 if s = 0

Πs
l=1(π∗e

γΥ
α

1−α )1−ιw(πt+l−1e
z∗t+l−1)ιw

Πs
l=1πt+le

z∗t+l
otherwise

and

Lt+s(j) =
(
w̃twtw

−1
t+sX̃t,s

)− 1+λw
λw Lt+s.

Equation 1.1.38 becomes:

1 = [(1− ζw)w̃
1
λw
t + ζw((π∗e

γΥ
α

1−α )1−ιw(πt−1e
z∗t−1)ιw

wt−1

wt
π−1
t e−z

∗
t )

1
λw ]λw . (1.65)

which imply at steady state:

w∗ = (1 + λw)
ϕLνl∗
ξ∗

, (1.66)

w̃∗ = 1. (1.67)

Resource constraints

If the technology process is stationary, the resource constraint become:

y∗g̃te
− 1

1−α z̃t + ct + it + a(ut)ē
−z∗t kt−1 = yt, (1.68)

otherwise it becomes:

y∗gt + ct + it + a(ut)ē
−z∗t kt−1 = yt. (1.69)
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Detrended output is also given as a function of inputs by:

ẏt = kαt L
1−α
t − Φe−

1
1−α z̃t . (1.70)

Yt =

(
Ṗt
Pt

) 1+λf,t
λf,t

Ẏt

becomes

yt = (ṗt)
1+λf,t
λf,t ẏt (1.71)

where

ṗt =
Ṗt
Pt

= [(1− ζp)(
P̃t
Pt

)
−

1+λf,t
λf,t + ζp(π∗

Ṗt−1

Pt
)
−

1+λf,t
λf,t ]

−
λf,t

1+λf,t

= [(1− ζp)p̃
−

1+λf,t
λf,t

t + ζp(π∗ṗt−1π
−1
t )
−

1+λf,t
λf,t ]

−
λf,t

1+λf,t

(1.72)

While

Lt =

(
Ẇt

Wt

) 1+λw,t
λw,t

L̇t

becomes

Lt = (ẇt)
1+λw,t
λw,t L̇t (1.73)

where

ẇt =
Ẇt

Wt

= [(1− ζw)(
W̃t

Wt
)
− 1+λw,t

λw,t + ζw(π∗e
γΥ

α
1−α

Ẇt−1

Wt
)
− 1+λw,t

λw,t ]
− λw,t

1+λw,t

= [(1− ζw)w̃
− 1+λw,t

λw,t

t + ζw(π∗e
γΥ

α
1−απ−1

t e−z
∗
t
wt−1

wt
ẇt−1)

− 1+λw,t
λw,t ]

− λw,t
1+λw,t

(1.74)

At steady state we have:
1

1− g∗
(c∗ + i∗) = y∗. (1.75)

and

y∗ = kα∗L
1−α
∗ − Φ. (1.76)

and

ẏ∗ = y∗, L̇∗ = L∗.

14



1.3 Steady State

For now treat L∗ as a parameter (we will see that the real variables are all defined as a

ratio to L∗, so L∗ is just a normalization constant). Define the real rate

r∗ =
R∗
π∗
, (1.77)

then from 1.52 we have:

r∗ = β−1eσcz
∗
∗b−1
∗ . (1.78)

From 1.62:

rk∗ = b∗r∗Υ− (1− δ) = β−1eσcz
∗
∗Υ− (1− δ). (1.79)

From 1.42:

w∗ =

(
1

1 + λf
αα(1− α)(1−α)rk −α∗

) 1
1−α

(1.80)

From 1.47

k∗ =
α

1− α
w∗
rk∗
L∗. (1.81)

From 1.56 and 1.57:

k̄∗ = eγΥ
1

1−αk∗, (1.82)

i∗ =
(

1− (1− δ)e−γΥ−
1

1−α
)
k̄∗. (1.83)

From 1.76:

y∗ = kα∗L
1−α
∗ − Φ. (1.84)

SW use the reparameterization Φp =
y∗ + Φ

y∗
, implying that steady state output is given

by:

y∗ =
kα∗L

1−α
∗

Φp
. (1.85)

From 1.75:

c∗ = (1− g∗)y∗ − i∗, (1.86)

(as opposed to c∗ =
y∗
g∗
− i∗ in DSSW). (Aside: note that 1.53 implies

c∗(1− he−z
∗
∗ )Lνl∗ = w∗.

Since we already have c∗ and w∗ it would seem L∗ is given. In fact, this is because SW

do not use the parameter ϕ, which would make 1.53 hold for any L∗.)
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1.4 Log-linear

1. If technology is stationary, eq. 1.68 becomes:

ŷt = ˆ̃gt −
1

1− α
z̃t +

c∗
y∗
ĉt +

i∗
y∗
ît +

rk∗k∗
y∗

ût, (1.87)

If technology has a unit root, eq. 1.69 becomes:

ŷt = ĝt +
c∗
y∗
ĉt +

i∗
y∗
ît +

rk∗k∗
y∗

ût, (1.88)

This is one of the two equilibrium conditions for which we need to write two

different versions for the stationary and non-stationary case (the other being the

production function). The difference with DSSW (eq. 1.2.77) are due to a different

definition of the government spending process which in SW is given by gt =
Gt
y∗Z∗t

,

with g∗ = 1 − c∗ + i∗
y∗

(in our case, gt =
Yt

Yt −Gt
and g∗ =

y∗
c∗ + i∗

). Note that in

SW g∗ ∈ (0, 1). This is eq. (1) in SW using the reparameterizations

cy =
c∗
y∗
, iy =

i∗
y∗
, zy = rk∗

k∗
y∗
.

2. Eq. 1.49 becomes:

ξ̂t = R̂t + b̂t + IEt[ξ̂t+1]− IEt[π̂t+1]− σcIEt[ẑ∗t+1], (1.89)

and eq. 1.48 becomes:

ξ̂t = −σc(1− he−z
∗
∗ )−1

(
ĉt − he−z

∗
∗ ĉt−1 + he−z

∗
∗zt

)
+ (σc − 1)L1+νl

∗ L̂t,

which becomes using 1.53:

(1− he−z∗∗ )
σc

ξ̂t = −
(
ĉt − he−z

∗
∗ ĉt−1 + he−z

∗
∗zt

)
+

(σc − 1)

σc

w∗L∗
c∗

L̂t. (1.90)

Putting 1.89 and 1.90 two together we obtain:

ĉt = − (1− he−z∗∗ )
σc(1 + he−z∗∗ )

(
R̂t − IEt[π̂t+1] + b̂t

)
+

he−z
∗
∗

(1 + he−z∗∗ )
(ĉt−1 − ẑ∗t )

+
1

(1 + he−z∗∗ )
IEt
[
ĉt+1 + ẑ∗t+1

]
+

(σc − 1)

σc(1 + he−z∗∗ )

w∗L∗
c∗

(
L̂t − IEt[L̂t+1]

)
. (1.91)

This corresponds to eq. (2) in SW, and to the combination of eqs 1.2.68 and 1.2.66

in DSSW. In the code we follow SW’s code and use the normalization:

ˆ̃
bt = − (1− he−z∗∗ )

σc(1 + he−z∗∗ )
b̂t. (1.92)
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3. Eq. 1.58 becomes:

ît =
1

S′′e2z∗∗ (1 + βe(1−σc)z∗∗ )
q̂kt +

1

1 + βe(1−σc)z∗∗

(
ît−1 − ẑ∗t

)
+

βe(1−σc)z∗∗

1 + βe(1−σc)z∗∗
IEt

[̂
it+1 + ẑ∗t+1

]
+ µ̂t, (1.93)

where we follows SW and renormalize the process µ̂t by dividing it for S′′e2z∗∗ (1 +

βe(1−σc)z∗∗ ). This is eq. (3) in SW, and corresponds to eq. 1.2.71 in DSSW (which

was expressed in terms of ξkt ). The equation can be expressed, perhaps more

intuitively, in terms of q̂kt :

q̂kt = S′′e2z∗∗ (1 + βe(1−σc)z∗∗ )
(
ît −

1

1 + βe(1−σc)z∗∗

(
ît−1 − ẑ∗t

)
− βe(1−σc)z∗∗

1 + βe(1−σc)z∗∗
IEt

[̂
it+1 + ẑ∗t+1

]
− µ̂t

)
, (1.94)

4. Eq. 1.59 becomes

rk∗
rk∗ + (1− δ)

IEt[r
k
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
k
t+1]− q̂kt = R̂t + b̂t − IEt[π̂t+1] (1.95)

where we used 1.89. This is eq. (4) in SW (using the value of rk∗ one can see they

correspond) and is the same as eq. 1.2.72 in DSSW, except that this was expressed

in terms of ξkt . In the code we use the normalization 1.92, consistently with 1.91.

5. Eq. 1.2.78 becomes:

ŷt = Φp

(
αk̂t + (1− α)L̂t

)
+ (Φp − 1)

1

1− α
z̃t. (1.96)

This is eq. (5) in SW. Note that the last term in 1.96 is non-stationary if ρz = 1,

so it needs to be dropped in that case (which amounts to assuming the fixed costs

are proportional to Zt as opposed to just eγt)

6. Eq. 1.2.69 remains the same:

k̂t = ût − ẑ∗t + ˆ̄kt−1. (1.97)

This is eq. (6) in SW.
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7. Equations 1.98 becomes:
1− ψ
ψ

r̂kt = ut. (1.98)

where
1− ψ
ψ

is simply a reparameterization of the ratio
rk∗
a′′

that appears in 1.2.73.

This is eq. (7) in SW with z1 =
1− ψ
ψ

, and eq. 1.2.73 in DSSW.

8. Eq. 1.55 becomes:

ˆ̄kt = (1 − i∗
k̄∗

)
(

ˆ̄kt−1 − ẑ∗t
)

+
i∗
k̄∗
ît +

i∗
k̄∗
S
′′
e2z∗∗ (1 + βe(1−σc)z∗∗ )µ̂t. (1.99)

This is eq. (8) in SW, and corresponds to eq. 1.2.70 in DSSW, except for the

renormalization of the exogenous process µt. Note that in SW’s code the term

(1 + βe(1−σc)z∗∗ ) is erroneously omitted from the coefficient multiplying µ̂t.

9. Eq. 1.2.61 remains the same as in DSSW:

m̂ct = (1− α) ŵt + α r̂kt . (1.100)

This is eq. (9) in SW, where µ̂pt = −m̂ct and where they used (1.103) to substitute

for r̂kt . That is actually what we also do in the code, obtaining:

m̂ct = ŵt + αL̂t − αk̂t. (1.101)

10. Eq. (TO DO) becomes:

π̂t =
(1− ζpβe(1−σc)z∗∗ )(1− ζp)

(1 + ιpβe(1−σc)z∗∗ )ζp((Φp − 1)εp + 1)
m̂ct

+
ιp

1 + ιpβe
(1−σc)z∗∗

π̂t−1 +
βe(1−σc)z∗∗

1 + ιpβe
(1−σc)z∗∗

IEt[π̂t+1] + λ̂f,t (1.102)

This is eq. (10) in SW.

11. Eq. 1.2.65 remains the same:

k̂t = ŵt − r̂kt + L̂t. (1.103)

This is eq. (11) in SW.
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12. Eq. 1.50, which essentially defines the household’s marginal rate of subsitution

between consumption and labor,

1

1− he−z∗∗
(
ĉt − he−z

∗
∗ ĉt−1 + he−z

∗
∗ ẑ∗t

)
+ νlL̂t = ŵht . (1.104)

This corresponds to eq. (12) in SW, except that they express it in terms of the

markup µ̂wt = ŵt − ŵht , which is what we also do in our code. DSSW did not have

this equation as we plugged it the wage Phillips curve directly.

13. Eq. (TO DO) becomes:

ŵt =
(1− ζwβe(1−σc)z∗∗ )(1− ζw)

(1 + βe(1−σc)z∗∗ )ζw((λw − 1)εw + 1)

(
ŵht − ŵt

)
− 1 + ιwβe

(1−σc)z∗∗

1 + βe(1−σc)z∗∗
π̂t +

1

1 + βe(1−σc)z∗∗
(ŵt−1 − ẑ∗t + ιwπ̂t−1)

+
βe(1−σc)z∗∗

1 + βe(1−σc)z∗∗
IEt
[
ŵt+1 + ẑ∗t+1 + π̂t+1

]
+ λ̂w,t (1.105)

This is eq. (13) in SW. In the code we follow SW and replace ŵht − ŵt with −µ̂wt .

14. Eq. 1.2.79 becomes:

R̂t = ρRR̂t−1 + (1− ρR)
(
ψ1π̂t + ψ2(ŷt − ŷft )

)
+ ψ3

(
(ŷt − ŷft )− (ŷt−1 − ŷft−1)

)
+ r̂mt (1.106)

where the differences are (1) the use of flexible price/wage output to measure the

output gap, (2) the addition of the term ψ3

(
(ŷt − ŷft )− (ŷt−1 − ŷft−1)

)
; (3) the

fact that the residual r̂mt is autocorrelated.
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15. Additional flexible price/wages equations, where we replace the real rate rft for

R̂t − IEt[π̂t+1] :

ŷft = ĝt +
c∗
y∗
ĉft +

i∗
y∗
îft +

rk∗k∗
y∗

ûft , (1.107)

ĉft = − (1− he−z∗∗ )
σc(1 + he−z∗∗ )

(
r̂ft + b̂t

)
+

he−z
∗
∗

(1 + he−z∗∗ )

(
ĉft−1 − ẑ

∗
t

)
+

1

(1 + he−z∗∗ )
IEt[ĉ

f
t+1 + ẑ∗t+1]

+
(σc − 1)

σc(1 + he−z∗∗ )

w∗L∗
c∗

(
L̂ft − IEt[L̂

f
t+1]

)
, (1.108)

q̂kft = S′′e2z∗∗ (1 + βe(1−σc)z∗∗ )
(
îft −

1

1 + βe(1−σc)z∗∗

(
îft−1 − ẑ

∗
t

)
− βe(1−σc)z∗∗

1 + βe(1−σc)z∗∗
IEt

[̂
ift+1 + ẑ∗t+1

]
− µ̂t

)
, (1.109)

r̂ft =
rk∗

rk∗ + (1− δ)
IEt[r

kf
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
kf
t+1]− q̂kft − b̂t (1.110)

ŷft = Φp

(
αk̂ft + (1− α)L̂ft

)
+ (Φp − 1)

1

1− α
z̃t, (1.111)

k̂ft = ûft − ẑ∗t + ˆ̄kft−1, (1.112)

uft =
1− ψ
ψ

r̂kft , (1.113)

ˆ̄kft = (1− i∗
k̄∗

)
(

ˆ̄kft−1 − ẑ
∗
t

)
+
i∗
k̄∗
îft +

i∗
k̄∗
S
′′
e2z∗∗ (1 + βe(1−σc)z∗∗ )µ̂t. (1.114)

0 = (1− α) ŵft + α r̂kft . (1.115)

k̂ft = ŵft − r̂
kf
t + L̂ft , (1.116)

ŵft =
1

1− he−z∗∗
(
ĉft − he−z

∗
∗ ĉft−1 + he−z

∗
∗ ẑ∗t

)
+ νlL̂

f
t . (1.117)

16. The exogenous processes are described in section 1.1.5.

1.5 Adding BGG financial frictions to SW

Amounts to replacing 1.95 with conditions 2.50 and 2.52 (see section 2), which we repeat

here for convenience:

Et

[̂̃Rkt+1 − R̂t
]

= b̂t + ζsp,b

(
q̂kt + ̂̄kt − n̂t)+ σ̃ω,t + µ̃et (1.118)

̂̃Rkt − πt =
rk∗

rk∗ + (1− δ)
r̂kt +

(1− δ)
rk∗ + (1− δ)

q̂kt − q̂kt−1, (1.119)
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and adding the eq. condition 2.51 describing the evolution of entrepreneurial net worth

n̂t = ζn,R̃k

(̂̃Rkt − πt)− ζn,R (R̂t−1 + bt−1 − πt
)

+ ζn,qK

(
q̂kt−1 + ̂̄kt−1

)
+ζn,nn̂t−1 + γ̃t +

we∗
n∗
ŵet − γ∗

v∗
n∗
ẑ∗t −

ζn,µe

ζsp,µe
µ̃et−1 −

ζn,σω
ζsp,σω

σ̃ω,t−1

(1.120)

Note that if ζsp,b = 0 and the financial friction shocks are zero, 1.95 coincides with

1.118 plus 1.119. In particular, we stick to SW’s assumption that returns to deposit

are not subject to the same “intermediation cost” shock bt as government bonds. This

assumption mirrors SW’s assumption that capital investment was not subject to that

transaction cost.

1.6 Anticipated policy shocks

We modify the policy rule (1.106) so to incorporate anticipated policy shocks. In order

to do so we add the anticipated shocks to the exogenous component of monetary policy

as follows:

r̂mt = ρrm r̂
m
t−1 + σrεrm,t +

K∑
k=1

σk,rε
R
k,t−k, (1.121)

where εR,t is the usual contemporaneous policy shock and εRk,t−k is a policy shock that

is known to agents at time t − k, but affects the policy rule k periods later, that is, at

time t. We assume as usual that εRk,t−k ∼ N(0, 1), i.i.d..

In order to solve the model we need to express the anticipated shocks in recur-

sive form. For this purpose, we augment the state vector st with K additional states

νRt ,. . . ,νRt−K whose law of motion is as follows:

νR1,t = νR2,t−1 + σ1,rε
R
1,t

νR2,t = νR3,t−1 + σ2,rε
R
2,t

...

νRK,t = σK,rε
R
K,t

and rewrite expression (1.122) as

r̂mt = ρrm r̂
m
t−1 + σrεrm,t + νR1,t−1, (1.122)
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It is easy to verify that νR1,t−1 =
K∑
k=1

σk,rε
R
k,t−k, that is, νR1,t−1 is a “bin” that collects

all anticipated shocks that affect the policy rule in period t. In the implementation,

we assume that these shocks have the same standard deviation as the contemporaneous

shock: σk,r = σr.

1.7 Adding long run changes in productivity

We add long run changes in productivity. Specifically we assume that the production

function is:

Yt(i) = max{ez̃tKt(i)
α
(
Lt(i)e

γtZpt
)1−α − ΦZ∗t , 0}, (1.123)

where z̃t and zpt = log(Zpt /Z
p
t−1) follow AR(1) processes:

z̃t = ρz z̃t−1 + σzεz,t, εz,t ∼ N(0, 1), (1.124)

zpt = ρzpz
p
t−1 + σzpεzp,t, εzp,t ∼ N(0, 1), (1.125)

and

Z∗t = ZtZ
p
t e

(γ+ α
1−α log Υ)t, Zt = e

1
1−α z̃t . (1.126)

We detrend by Z∗t as in section 1.2. Define z∗t = log(Z∗t /Z
∗
t−1) with z∗∗ = γ+

α

1− α
log Υ.

From 1.124, 1.125 and 1.126 we see that

ẑ∗t = z∗t − z∗∗ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t + zpt , (1.127)

and

Et[ẑ
∗
t+1] =

1

1− α
(ρz − 1)z̃t + ρzpz

p
t . (1.128)

Note that we can accommodate both cases where z̃t is stationary and random walk

(ρz = 1). Regardless, there is a stochastic trend in growth. Therefore in equations 1.87

and 1.96 the term
1

1− α
z̃t needs to be dropped.
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1.8 Measurement equation for TFP (version 1)

Assume Υ = 1. Total factor productivity takes the following form in our model, when

abstracting from the fixed costs:

TFPt = (Z∗t )1−α = ez̃t+(1−α)γt (Zpt )
1−α

.

TFP including variable capital utilization, i.e., unadjusted TFP, is given by

TFP ut = (Z∗t )1−α uαt .

Taking log on both sides and dividing by 1− α, we obtain

1

1− α
log TFP ut = logZ∗t +

α

1− α
log ut

and taking differences

1

1− α
log
(
TFP ut /TFP

u
t−1

)
= z∗t +

α

1− α
(log ut − log ut−1)

= z∗∗ + ẑ∗ +
α

1− α
(ût − ût−1)

Fernald provides data on total factor productivity growth. We use the utilization

unadjusted series and divide it by his estimates of 1− α to obtain a series of productiv-

ity expressed in labor-augmenting form. The resulting series should correspond in our

model to the expression on the right hand side. We demean Fernald’s series and add

measurement error so that we obtain the measurement equation

TFP growth (unadjusted for utilization, demeaned, expressed in labor augmenting terms)

= ẑ∗ +
α

1− α
(ût − ût−1) + etfpt .

1.9 Measurement equation for TFP (version 2)

We have the linearized production function

ŷt = Φp

(
αk̂t + (1− α) L̂t

)
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where ŷt = log (Yt/Z
∗
t ) − log y∗, Z

∗
t = e

1
1−α z̃t+(γ+ α

1−αΥ)tZpt , L̂t = log (Lt/L∗) , and

the effective capital k̂t = log
(
Υ−tKt/Z

∗
t

)
− log k∗ relates to installed capital ̂̄kt−1 =

log
(

Υ−(t−1)K̄t−1/Z
∗
t−1

)
− log

(
eγΥ

1
1−αk∗

)
as follows

k̂t = ût − ẑ∗t + ̂̄kt−1

where ût = log ut−log u∗ = log ut, and ẑ∗t = log
(
Z∗t /Z

∗
t−1

)
−z∗∗ , and z∗∗ = γ+

α

1− α
log Υ.

We can rewrite this as

log (Yt/Z
∗
t )− log y∗ = Φp

(
α
(
ût − ẑ∗ + ̂̄kt−1

)
+ (1− α) L̂t

)
= Φp

(
α
(
ût − ẑ∗ + log

(
Υ−(t−1)K̄t−1/Z

∗
t−1

)
− log

(
eγΥ

1
1−αk∗

))
+ (1− α) (logLt − logL∗)

)
Taking first differences

log Yt − log Yt−1 = logZ∗t − logZ∗t−1 + Φpα
(
ût − ût−1 − ẑ∗ + ẑ∗t−1 + log K̄t−1 − log K̄t−2 − logZ∗t−1 + logZ∗t−2

)
+Φpα

(
log Υ−(t−1) − log Υ−(t−2)

)
+ Φp (1− α) (logLt − logLt−1)

= z∗∗ + ẑ∗ + Φpα (ût − ût−1 − ẑ∗ − z∗∗) + Φpα log
(
K̄t−1/K̄t−2

)
+ Φpα log

(
Υ−1

)
+ Φp (1− α) log (Lt/Lt−1)

or

log (Yt/Yt−1) = Φpα log
(
K̄t−1/K̄t−2

)
+ Φpα log

(
Υ−1

)
+ Φp (1− α) log (Lt/Lt−1)

+Φp (1− α)

[(
(1− Φpα)

Φp (1− α)
(z∗∗ + ẑ∗) +

Φpα

Φp (1− α)
(ût − ût−1)

)]
.

Fernald provides data on total factor productivity growth. We use the utilization

unadjusted series and divide it by his estimates of 1−α to obtain a series of productivity

expressed in labor-augmenting form. The resulting series should correspond in our model

to the last term in square brackets. We demean Fernald’s series and add measurement

error so that we obtain the measurement equation

TFP growth (unadjusted for utilization, demeaned, expressed in labor augmenting terms)

=
(1− Φpα)

Φp (1− α)
ẑ∗ +

α

1− α
(ût − ût−1) + etfpt .

Note that if Φp = 1, this reduces to

TFP growth (unadjusted for utilization, demeaned, expressed in labor augmenting terms)

= ẑ∗ +
α

1− α
(ût − ût−1) + etfpt .
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1.10 Computing the Initial Level of Stationary Productivity/BN de-

composition

Imagine there are no long run changes in productivity and ρz < 1, so that z̃t and therefore

log(Zt) =
1

1− α
z̃t are stationary (with zero mean), and Z∗t = Zte

γt is trend-stationary.

Then we know that E log(Z∞)→ 0. We can use this fact to pin down the initial level of

log(Z0).

Define (as we did in the previous section) ẑt = log(Zt) − log(Zt−1) as the demeaned

growth rate of productivity. Then

ET [log(Z∞)− log(ZT )] = ET

 ∞∑
j=1

ẑT+j


or

ET [log(ZT )] = −ET

 ∞∑
j=1

ẑT+j

 (1.129)

after imposing ET log(Z∞) = 0. The term ET

 ∞∑
j=1

ẑT+j

 can be computed using our

state space model. Define the transition equation as

st = Φst−1 +Rεt,

where st is the state vector and Ψz is a row vector of zeros with 1 corresponding to the

position of the state ẑt (that is, Ψz ‘picks’ the state ẑt). Then

ET

 ∞∑
j=1

ẑT+j

 = ET

 ∞∑
j=1

ΨzsT+j

 = ET

 ∞∑
j=1

ΨzΦ
jsT


= ΨzΦ

 ∞∑
j=0

Φj

ET [sT ] = ΨzΦ (I − Φ)−1 sT |T . (1.130)

We have also computed (“blue” line in the plots)

ET [log(ZT )− log(Z0)] = ET

[
T∑
t=1

ẑt

]
=

T∑
t=1

ẑt|T .

Putting this together with conditions 1.130 and 1.129 we obtain:

ET [log(Z0)] = −ΨzΦ (I − Φ)−1 sT |T −
T∑
t=1

ẑt|T .
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1.11 Adding income as an observable

We add Gross Domestic Income (GDI) as an additional observable in the model. We

assume that model output loads on both observed GDP and GDI growth rates as follows:

∆GDPt = (ŷt − ŷt−1 + ẑt) + egdpt − egdpt−1 + 100(exp(z∗t )− 1) (1.131)

∆GDIt = Γgdi(ŷt − ŷt−1 + ẑt) + egdit − e
gdi
t−1 + 100(exp(z∗t )− 1) + δgdi (1.132)

We set δgdi = 0 and Γgdi = 1. We also introduce correlated measurement error in levels

between GDP and GDI:

egdpt = ρgdp · egdpt−1 + σgdpε
gdp
t , εgdpt ∼ i.i.d.N(0, 1)

egdit = ρgdi · egdit−1 + %gdp · σgdpεgdpt + σgdiε
gdi
t , εgdit ∼ i.i.d.N(0, 1).

We also try including the model output level to the “measurement error”. That is,

the observed output may be further from the true output during periods of larger output

growth/contraction. We augment equations 1.131 and 1.132 as follows:

GDPt = (yt − yt−1 + zt) + (egdpt − egdpt−1)

+λgdp(yt − yt−1) + 100(exp(z∗t )− 1)
(1.133)

GDIt = Γgdi(yt − yt−1 + zt) + (egdit − e
gdi
t−1)

+λgdi(yt − yt−1) + 100(exp(z∗t )− 1) + δgdi
(1.134)
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1.12 Alternative Scenarios

Here we discuss how we implement alternative scenarios. Write the state space system

as:

st = T (θ)st−1 +R(θ)εt (1.1)

where st is the model’s vector of “state” variables, the matrices T and R are functions

of the vector of all model parameters θ, and εt is the vector of structural shocks. The

vector of observables yt described below is in turn related to the states according to the

system of measurement equations:

yt = D(θ) + Z(θ)st. (1.2)

Starting from sT , roll the system forward to obtain:

yT+1 = D + ZT sT + ZRεT+1

yT+2 = D + ZT 2sT + ZT RεT+1 + ZRεT+2

...

yT+H̄ = D + ZT H̄sT +

H̄−1∑
j=0

ZT jRεT+H̄−j .

(1.3)

Algorithm 1 Drawing Counterfactual (Alt Scenarios) Forecasts .1

1. Choose a set of targets (all expressed in deviations from steady state/baseline fore-

casts) ∆̄y = [∆̄yT+1, .., ∆̄yT+H̄ ] and shocks ε̄ = [ε̄T+1, .., , ε̄T+H̄ ], where ∆̄y and ε̄

must be of the same size k. The two are linked by the system of equations:

∆̄yT+1 = ZT+1,.R.,T+1ε̄T+1

∆̄yT+2 = ZT+2,.T R.,T+1ε̄T+1 + ZT+2,.R.,T+2ε̄T+2

...

∆̄yT+H̄ =
H̄−1∑
j=0

ZT+H̄,.T jR.,T+H̄−j ε̄T+H̄−j .

(1.4)

1 Here we focus on the mode of the posterior density for θ. If we want the whole distribution we just

repeat the algorithm for each draw of θ.
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where ZT+j,. and R.,T+j refer to the rows of the matrix Z and the columns of

the matrix R corresponding to the targets (∆̄yT+j) and the instruments (ε̄T+j) in

period T + j. This linear system of k equations with k unknowns can be solved for

the vector of shocks ε̄. Specifically, rewrite the system (1.4) as

∆̄y = Mε̄ (1.5)

where

M =


ZT+1,.R.,T+1 0 .. 0

ZT+2,.T R.,T+1 ZT+2,.R.,T+2 .. 0
...

...
. . .

ZT+H̄,.T H̄−1R.,T+1 ZT+H̄,.T H̄−2R.,T+2 . . . ZT+H̄,.R.,T+H̄


and the solution is ε̄ = M−1∆̄y.

2. Compute the alternative scenario for the entire set of observables y using

∆yT+1 = ZR.,T+1ε̄T+1

∆yT+2 = ZT R.,T+1ε̄T+1 + ZT+2,.R.,T+2ε̄T+2

...

∆yT+H̄ =
H̄−1∑
j=0

ZT jR.,T+H̄−j ε̄T+H̄−j .

(1.6)

These are the same equations as in (1.4), except that Z replaces ZT+j,. .

1.12.1 No effect of initial state

The initial state of the forecast and of the shock decomposition has no effect on the

forecast under scenario and shock decomposition under scenario values.

The forecast under scenario is computed as the difference of the scenario forecast

sscent = T sscent−1 +Rε0t (1.7)

and the baseline, no-shocks, forecast

sbaset = T sbaset−1 (1.8)
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where ε0t is the solved shock path under the scenario and the initial state vector, sT , is

the same for both forecasts. Note that we switch to the notation ε0t from the notation ε̄t

above.

Our “forecast under scenario” is computed by subtracting (1.7) - (1.8), and we then

refer to the units of this forecast under scenario as “deviations from baseline”:

st = sscent − sbaset (1.9)

We can rewrite equation 1.7 as

sscenT+1 = T sT +Rε0T+1

sscenT+2 = T sscenT+1 +Rε0T+2 = T 2sT + T Rε0T+1 +Rε0T+2

. . .

sscenT+H = T HsT +

H∑
h=1

T h−1Rε0h (1.10)

and equation 1.8 as

sbaseT+1 = T sT

sbaseT+2 = T sbaseT+1 = T 2sT

. . .

sbaseT+H = T HsT (1.11)

We can now rewrite equation 1.9 as

sT+H = sscenT+H − sbaseT+H

sT+H = (T HsT +

H∑
h=1

T h−1Rε0h)− (T HsT )

sT+H =

H∑
h=1

T h−1Rε0h (1.12)

The important observation is that the forecast under scenario does not depend on

the initial state sT .
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Similarly, we compute a shock decomposition of our forecast under scenario. We

know that the model is linear and additive, so we can write out the shock decomposition

procedure ignoring the fact that we do this for only one shock at a time.

sshockdect = T sshockdect−1 +Rε0t

sshockdecT = 0 (1.13)

For some period T +H, we can then write equation 1.13 as

sshockdecT+1 = T sshockdecT +Rε0T+1 = sshockdecT+1 = T · 0 +Rε0T+1 = sshockdecT+1 = Rε0T+1

sshockdecT+2 = T Rε0T+1 +Rε0T+2

. . .

sshockdecT+H =
H∑
h=1

T h−1Rε0h (1.14)

Comparing equations 1.12 and 1.14, we can see that the initial state does not enter

into either formulation and that the two should match at each period.
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2 The FRBNY DSGE model: Adding BGG-type financial

frictions to the SW model

2.0.2 Households

The household’s problem is different as households no longer hold the capital stock, and

make investment and capital utilization decisions. Rather, they invest in deposits to the

banking sector Dt (in addition to government bonds), which pay a gross nominal interest

rate Rdt . Household j’s budget constraint is:

Ct+s(j) +
Bt+s(j)

bt+sRt+sPt+s
+

Dt+s(j)

Rdt+sPt+s
≤ Bt+s−1(j)

Pt+s

+
Dt+s−1(j)

Pt+s
+
W h
t+s

Pt+s
Lt+s(j) + Πt+s − Tt+s. (2.1)

Households’ first order conditions for consumption, bonds, and labor supply are un-

changed. The FOC for deposits is

Ξt = βRdt IEt[Ξt+1π
−1
t+1]

which implies that

Rdt = Rtbt,

and at steady state
Rd∗
π∗

= r∗b∗ = β−1eσcz
∗
∗ .

2.0.3 Capital Producers

There is a representative, competitive, capital producer who produces new capital by

transforming general output – which is bought from final goods producers at the nominal

price Qkt – into new capital via the technology:

x′ = x+ Υtµt

(
1− S(

It
It−1

)

)
It. (2.2)

where x is the initial capital purchased from entrepreneurs in period t, and x′ is the new

stock of capital, which they sell back to entrepreneurs at the end of the same period.
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Their period profits, expressed in terms of consumption goods, are therefore given by:

Πk
t =

Qkt
Pt
x′ − Qkt

Pt
x− It

=
Qkt
Pt

Υtµt

(
1− S(

It
It−1

)

)
It − It.

(2.3)

Note that these profits do not depend on the initial level of capital x purchased, so

effectively the only decision variable for capital producers is It. Since they discount

profits using the households’ discount rate βtΞt, their FOC wrt It are:

(∂It) Ξt
Qkt
Pt

Υtµt

(
1− S(

It
It−1

)− S′( It
It−1

)
It
It−1

)
+ βIEt[Ξt+1

Qkt+1

Pt+1
Υt+1µt+1S

′(
It+1

It
)(
It+1

It
)2] = Ξt (2.4)

Note that this FOC is identical to 1.18 if we replace
Qkt
Pt

with Ξkt /Ξt.

2.0.4 Entrepreneurs

There is a continuum of entrepreneurs indexed by e. Each entrepreneur buys installed

capital K̄t−1(e) from the capital producers at the end of period t− 1 using her own net

worth Nt−1(e) and a loan Bl
t−1(e) from the banking sector:

Qkt−1K̄t−1(e) = Bl
t−1(e) +Nt−1(e)

where net worth is expressed in nominal terms. In the next period she rents capital

out to firms, earning a rental rate Rkt per unit of effective capital. In period t she

is subject to an i.i.d. (across entrepreneurs and over time) shock ω(e)t that increases

or shrinks her capital, where log ω(e)t ∼ N(mω,t−1, σ
2
ω,t−1) where mω,t−1 is such that

IEω(e)t = 1. Denote by Ft−1(ω) the cumulative distribution function of ω at time t,

where the distribution needs to be known at time t − 1. In addition, after observing

the shock she can choose a level of utilization u(e)t by paying a cost in terms of general

output equal to a(u(e)t)Υ
−t per-unit-of-capital. At the end of period t the entrepreneurs

sells undepreciated capital to the capital producers. Entrepreneurs’ revenues in period t

are therefore: {
Rkt u(e)t + (1− δ)Qkt − Pta(u(e)t)Υ

−t
}
ω(e)tK̄(e)t−1
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or equivalently

ω(e)tR̃
k(e)tQ

k
t−1K̄(e)t−1

where

R̃k(e)t =
Rkt u(e)t + (1− δ)Qkt − Pta(u(e)t)Υ

−t

Qkt−1

(2.5)

is the gross nominal return to capital for entrepreneurs. From the profit function it is

clear that the choice of the utilization rate is independent from the amount of capital

purchased or the ω shock, and is given by the FOC:

Rkt
Pt

= a′(u(e)t)Υ
−t, (2.6)

which is the same condition as 1.20. Consequently we can drop the index from the return

R̃kt .

The debt contract undertaken by the entrepreneur in period t − 1 consists of the

triplet (Bl(e)t−1, R
d(e)t, ω̄(e)t) where Rlt(e) represents the contractual interest rate, and

ω̄(e)t the theshold level of ω(e)t below which the entrepreneur cannot pay back, which

is therefore defined by the equation:

ω̄(e)tR̃
k
tQ

k
t−1K̄(e)t−1 = Rl(e)tB

l(e)t−1. (2.7)

For ω(e)t < ω̄(e)t the bank monitors the entrepreneurs and extracts a fraction (1− µet )

of its revenues R̃ktQ
k
t−1K̄(e)t−1, where µet represents exogenous bankrupcty costs. The

bank’s zero profit condition implies that [state by state?]:

[1− Ft−1(ω̄(e)t)]R
l(e)tB

l(e)t−1+(1−µet−1)

∫ ω̄(e)t

0
ωdFt−1(ω)R̃ktQ

k
t−1K̄(e)t−1 = Rdt−1B

l(e)t−1

where Rdt−1 is the rate paid by the bank to the depositors. If we define leverage as:

%(e)t ≡
Bl(e)t
N(e)t

,

use the definitions

Γt−1(ω̄t) ≡ ω̄t [1− Ft−1(ω̄t)] +Gt−1(ω̄t)

Gt−1(ω̄t) ≡
∫ ω̄t

0
ωdFt−1(ω),
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as well as the definiton of ω̄(e)t, the zero-profit condition can be rewritten as:[
Γt−1(ω̄(e)t)− µet−1Gt−1(ω̄(e)t)

] R̃kt
Rdt−1

(1 + %(e)t−1) = %(e)t−1. (2.8)

Entrepreneurs’ expected profits (before the realization of the shock ωt) can be written

as: ∫ ∞
ω̄(e)t

[
ω(e)tR̃

k(e)tQ
k
t−1K̄(e)t−1 −Rl(e)tBl(e)t−1

]
dFt−1(ω(e)t) =[∫ ∞

ω̄(e)t

ω(e)tdFt−1(ω(e)t)− ω̄(e)t[1− Ft−1(ω̄(e)t)]

]
R̃k(e)tQ

k
t−1K̄(e)t−1 =

[1− Γt−1(ω̄(e)t)]
R̃kt
Rdt−1

[1 + %(e)t−1]Rdt−1N(e)t−1

The contract that maximizes expected net worth for the entrepreneurs is given by:

max
{%(e)t−1,ω̄(e)t}

Et−1


[1− Γt−1(ω̄(e)t)]

R̃kt
Rdt−1

[1 + %(e)t−1]Rdt−1N(e)t−1

+ηt

{[
Γt−1(ω̄(e)t)− µet−1Gt−1(ω̄(e)t)

] R̃kt
Rdt−1

[1 + %(e)t−1]− %(e)t−1

}


so that the FOCs are:

%(e)t−1 : 0 = Et−1

[
[1− Γt−1(ω̄(e)t)]

R̃kt
Rdt−1

]
Rdt−1N(e)t−1

+Et−1

[
ηt

{[
Γt−1(ω̄(e)t)− µet−1Gt−1(ω̄(e)t)

] R̃kt
Rdt−1

− 1

}]
ω̄(e)t : ηt =

Γ′t−1(ω̄(e)t)

Γ′t−1(ω̄(e)t)− µet−1G
′
t−1(ω̄(e)t)

Rdt−1N(e)t−1

Substituting the second FOC into the first we obtain:

Et−1

[
[1− Γt−1(ω̄t)]

R̃kt
Rdt−1

+
Γ′t−1(ω̄t)

Γ′t−1(ω̄t)− µet−1G
′
t−1(ω̄t){[

Γt−1(ω̄t)− µet−1Gt−1(ω̄t)
] R̃kt
Rdt−1

− 1

}]
= 0. (2.9)

where we omit the the indicator (e) since the condition implies that ω̄(e)t only depends

on aggregate variables and is the same across entrepreneurs. From the zero profits

condition 2.8 this implies that leverage %(e)t−1 is also the same, hence we can rewrite 2.8

as a function of aggregate variables only:[
Γt−1(ω̄t)− µet−1Gt−1(ω̄t)

] R̃kt
Rdt−1

=
Qkt−1K̄t−1 −Nt−1

Qkt−1K̄t−1
. (2.10)
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Aggregate entrepreneurs’ equity evolves according to:

Vt =

∫ ∞
ω̄t

ωtR̃
k
tQ

k
t−1K̄(e)t−1dFt−1(ωt)− [1− Ft−1(ω̄t)]R

l(e)tB
l(e)t−1

= R̃ktQ
k
t−1K̄t−1 −

[
Rdt−1 + µet−1Gt−1 (ω̄t) R̃

k
t

Qkt−1K̄t−1

Qkt−1K̄t−1 −Nt−1

](
Qkt−1K̄t−1 −Nt−1

)
.

(2.11)

A fraction 1− γt of entrepreneurs exits the economy and fraction γt survives to continue

operating for another period. A fraction Θ of the total net worth owned by exiting

entrepreneurs is consumed upon exit and the remaining fraction of their networth is

transfered as a lump sum to the households. Each period new entrepreneurs enter and

receive a net worth transfer W e
t . Because W e

t is small, this exit and entry process ensures

that entrepreneurs do not accumulate enough net worth to escape the financial frictions.

Aggregate entrepreneurs’ net worth evolves accordingly as:

Nt = γtVt +W e
t . (2.12)

2.0.5 Detrending and steady state

We detrend the additional variables introduced by this extension as follows:

qkt =
Qkt
Pt

Υt, nt =
Nt

PtZ
∗
t

, vt =
Vt
PtZ

∗
t

, wet =
W e
t

PtZ
∗
t

. (2.13)

All other variables are detrended as in 1.38. Expressions 2.4, 2.5, 2.6, 2.10, 2.11,

and 2.12 become

ξtq
k
t µt

(
1− S(

it
it−1

ez
∗
t )− S′( it

it−1
ez
∗
t )

it
it−1

ez
∗
t

)
+ βIEt[e

−σcz∗t+1ξt+1q
k
t+1µt+1S

′(
it+1

it
ez
∗
t+1)(

it+1

it
ez
∗
t+1)2] = ξt (2.14)

R̃kt =
rkt ut + (1− δ)qkt − a(ut)

qkt−1Υ
πt (2.15)

rkt = a′(ut) (2.16)

ω̄tR̃
k
t = Rlt

qkt−1k̄t−1 − nt−1

qkt−1k̄t−1
(2.17)

[
Γt−1(ω̄t)− µet−1Gt−1(ω̄t)

] R̃kt
Rdt−1

=
qkt−1k̄t−1 − nt−1

qkt−1k̄t−1
(2.18)
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vte
z∗t πt = R̃kt q

k
t−1k̄t−1 −

[
Rdt−1 + µet−1Gt−1 (ω̄t) R̃

k
t

qkt−1k̄t−1

qkt−1k̄t−1 − nt−1

](
qkt−1k̄t−1 − nt−1

)
(2.19)

nt = γtvt + wet . (2.20)

Expression 2.9 is already expressed in terms of detrended variables. Note that expres-

sion 2.17 pins down Rl given the other variables, as Rl does not enter anywhere else.

Therefore, unless we are interested in Rl, we can ignore this condition. Note also that

expression 2.14 is the same as 1.58.

The steady state relationships are:

ξ∗q
k
∗µ
(

1− S(ez
∗
∗ )− S′(ez∗∗ )ez∗∗

)
+ βe−σcz

∗
∗ξ∗q

k
∗µS

′(ez
∗
∗ )(ez

∗
∗ )2 = ξ∗ (2.21)

which implies since S(.) = S′(.) = 0 at steady state that qk∗ = 1. We also parameterize

a(.) so that u∗ = 1 and a(u∗) = 0. With this information, and after some simplification,

we can rewrite the remaining steady state equations as

R̃k∗
π∗

=
rk∗ + (1− δ)

Υ
(from 2.15) (2.22)

R̃k∗
Rd∗

= Ψ(ω̄∗, σω∗, µ
e
∗) (from 2.9) (2.23)

n∗
k̄∗

= 1− [Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)]
R̃k∗
Rd∗

(from 2.18) (2.24)

(
1− γ∗

Rd∗
π∗ez

∗
∗

)
n∗
k̄∗

= γ∗
Rd∗
π∗ez

∗
∗

{
R̃k∗
Rd∗

[1− µe∗G∗ (ω̄∗)]− 1

}
+
we∗
k̄∗

(from 2.19 and 2.20)

(2.25)

v∗ = γ−1
∗ (n∗ − we∗) . (from 2.20) (2.26)

with

Ψ (ω̄∗, σω∗, µ
e
∗) ≡

Γ′∗ (ω̄∗)

[1− Γ∗ (ω̄∗)] [Γ′∗ (ω̄∗)− µe∗G′∗ (ω̄∗)] + Γ′∗ (ω̄∗) [Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)]

=
1

1− µe∗
G′∗(ω̄∗)
Γ′∗(ω̄∗)

[1− Γ∗ (ω̄∗)]− µe∗G∗ (ω̄∗)
(2.27)

and where
Rd∗
π∗ez

∗
∗

= β−1e(σc−1)z∗∗ .
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Our strategy for computing the steady state is going to be the following: find a

solution for the real return to capital
R̃k∗
π∗

and use 2.22 to find rk∗ :

rk∗ = Υ
R̃k∗
π∗
− (1− δ). (2.28)

Once we have rk∗ we can proceed exactly as in section 1.3 to find the steady state for

the other variables. In absence of financial friction
Rd∗
π∗

and
R̃k∗
π∗

would be identical, but

frictions induce a spread between the two, which we will compute subsequently as a

function of the primitives in the economy (σ2
ω,∗, µ

e
∗, γ∗, w

e
∗).

We solve for the steady state according to the following steps:

1. Set

F∗ (ω̄∗) = F̄∗ (2.29)

and define

zω∗ ≡
ln ω̄∗ + 1

2σ
2
ω∗

σω∗
= Φ−1

(
F̄∗
)

(2.30)

which we can use to write

ω̄ (σω∗) = exp

{
σω∗z

ω
∗ −

1

2
σ2
ω∗

}
(2.31)

2. Given the value for the spread for debt contracts, Rl∗/R
d
∗, we can use equation

(2.17) to write

R̃k∗
Rd∗

=
Rl∗
Rd∗

1− n∗
qk∗ k̄∗

ω̄∗
(2.32)

(Note: this second step can be skipped if instead we calibrate/estimate R̃k∗/R
d
∗

directly.)

3. Given R̃k∗/R
d
∗, we can use (2.23) to write(
R̃k∗
Rd∗

)−1

= 1− µe∗
G′∗ (ω̄∗)

Γ′∗ (ω̄∗)
[1− Γ∗ (ω̄∗)]− µe∗G∗ (ω̄∗)

= 1− µe∗
{
G′∗ (ω̄∗)

Γ′∗ (ω̄∗)
[1− Γ∗ (ω̄∗)] +G∗ (ω̄∗)

}
which we can use to set

µe∗ (σω∗) =
1−

(
R̃k∗
Rd∗

)−1

G′∗(ω̄∗)
Γ′∗(ω̄∗)

[1− Γ∗ (ω̄∗)] +G∗ (ω̄∗)
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and plugging in the exact expressions we get

µe∗ (σω) =
1−

(
R̃k∗
Rd∗

)−1

1
σω∗

φ(zω∗ )
1−F̄∗

{
1− Φ (zω∗ − σω∗)− ω̄∗

(
1− F̄∗

)}
+ Φ (zω∗ − σω∗)

(2.33)

4. Given the above and equation (2.24) we get

n∗
k̄∗

(σω) = 1−
{
ω̄∗
[
1− F̄∗

]
+ (1− µe∗) Φ (zω∗ − σω∗)

} R̃k∗
Rd∗

(2.34)

5. Given the elasticity of the spread w.r.t. leverage, ζsp,b, derived below in equation

(2.42), we get the following expression

1−Φ(zω∗ −σω∗)
1−F̄∗

−ω̄∗

ω̄∗+(1−µe∗)
Φ(zω∗ −σω∗)

1−F̄∗

[
1− µe∗

σω∗
φ(zω∗ )
1−F̄∗

]
+ 1

µe∗
ω̄∗σ2

ω∗

φ(zω∗ )
1−F̄∗

−zω∗[
1− µe∗

σω∗
φ(zω∗ )
1−F̄∗

]2
φ(zω∗ )

(1−F̄∗)
2

R̃k∗
Rd∗
n∗
k̄∗

= −1−
ζ−1
sp,b(

n∗
k̄∗

)−1
− 1

(2.35)

which we can solve for σω∗. Once we find this value we can plug back into the

previous expressions, that depend on σω∗.

6. Given γ∗, and using equation (2.25) we get

we∗
k̄∗

=

(
1− γ∗

Rd∗
π∗ez

∗
∗

)
n∗
k̄∗
− γ∗

Rd∗
π∗ez

∗
∗

{
R̃k∗
Rd∗

[1− µe∗Φ (zω∗ − σω∗)]− 1

}
(2.36)

and from equation (2.26)
v∗
k̄∗

= γ−1
∗

(
n∗
k̄∗
− we∗
k̄∗

)
(2.37)

7. We get rk∗ using equation (2.22) to write

rk∗ = Υ
R̃k∗
π∗
− (1− δ) (2.38)

2.0.6 Log-linearization

Log-linearization of the FOC w.r.t. leverage (expression 2.9) yields:

0 = Et

(̂̃Rkt+1 − R̂dt
)

+ ζb,ω̄Et ̂̄ωt+1 + ζb,σω σ̂ω,t + ζb,µe µ̂
e
t (2.39)
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with

ζb,x ≡
∂
∂x

[{
[1− Γ(ω̄)] + Γ′(ω̄)

Γ′(ω̄)−µeG′(ω̄) [Γ(ω̄)− µeG(ω̄)]
}
R̃k∗
Rd∗
− Γ′(ω̄)

Γ′(ω̄)−µeG′(ω̄)

]
{

[1− Γ∗(ω̄∗)] + Γ′∗(ω̄∗)
Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)

[Γ∗(ω̄∗)− µ̄eG∗(ω̄∗)]
}
R̃k∗
Rd∗

x

defined for x ∈
{
ω̄, σ2

ω, µ
e
}

. Log-linearization of the zero profit condition (expres-

sion 2.18) yields:

̂̃Rkt − R̂dt−1 + ζz,ω̄ ̂̄ωt + ζz,σω σ̂ω,t−1 + ζz,µe µ̂
e
t−1 = − (%∗)

−1
(
n̂t−1 − q̂kt−1 − ̂̄kt−1

)
(2.40)

with

ζz,x ≡
∂
∂x [Γ(ω̄)− µeG(ω̄)]

Γ∗(ω̄∗)− µe∗G∗(ω̄∗)
x (2.41)

defined for x ∈
{
ω̄, σ2

ω, µ
e
}
. We can further write

̂̄ωt = − 1

ζz,ω̄%∗

(
n̂t−1 − q̂kt−1 − ̂̄kt−1

)
− 1

ζz,ω̄

(̂̃Rkt − R̂dt−1 + ζz,σω σ̂ω,t−1 + ζz,µe µ̂
e
t−1

)
and plug this expression into 2.39 to obtain:

0 = Et

[̂̃Rkt+1 − R̂dt
]

+ ζb,σω σ̂ω,t + ζb,µe µ̂
e
t

−
ζb,ω̄
ζz,ω̄

[
1

%∗

(
n̂t − q̂kt − ̂̄kt)+ Et

[̂̃Rkt+1 − R̂dt
]

+ ζz,σω σ̂ω,t + ζz,µe µ̂
e
t

]
hence

Et

[̂̃Rkt+1 − R̂dt
]

= ζsp,b

(
q̂kt + ̂̄kt − n̂t)+ ζsp,σω σ̂ω,t + ζsp,µe µ̂

e
t (2.42)

where

ζsp,b ≡ −
ζb,ω̄
ζz,ω̄

1− ζb,ω̄
ζz,ω̄

1

%∗

ζsp,σω ≡
ζb,ω̄
ζz,ω̄

ζz,σω − ζb,σω
1− ζb,ω̄

ζz,ω̄

ζsp,µe ≡
ζb,ω̄
ζz,ω̄

ζz,µe − ζb,µe

1− ζb,ω̄
ζz,ω̄

Log-linearization of the expression 2.20, characterizing net worth, yields:

n̂t = γ∗
v∗
n∗

(γ̂t + v̂t) +
we∗
n∗
ŵet . (2.43)
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Log-linearization of the expression 2.19, characterizing the evolution of entrepreneurial

equity, is

v̂t = −ẑt −
Rd∗
π∗ez

∗
∗

k̄∗ − n∗
v∗

(
R̂dt−1 − πt

)
+

R̃k∗
π∗ez

∗
∗

k̄∗
v∗

(1− µe∗G∗ (ω̄∗))

(̂̃Rkt − πt)+
Rd∗
π∗ez

∗
∗

n∗
v∗
n̂t−1(

R̃k∗
π∗ez

∗
∗

(1− µe∗G∗ (ω̄∗))−
Rd∗
π∗ez

∗
∗

)
k̄∗
v∗

(
q̂kt−1 + ̂̄kt−1

)
−µe∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗
∗

k̄∗
v∗

[
µ̂et−1 + ζG,ω̄ ̂̄ωt + ζG,σω σ̂ω,t−1

]
,

(2.44)

where we used the fact that at steady state v∗e
z∗∗π∗ = R̃k∗ k̄∗−Rd∗(k̄∗−n∗)−µe∗G∗ (ω̄∗) R̃

k
∗ k̄∗.

Plugging in the expression for ̂̄ωt we obtain

v̂t = −ẑt −
Rd∗
π∗ez

∗
∗

k̄∗ − n∗
v∗

(
R̂dt−1 − πt

)
+

R̃k∗
π∗ez

∗
∗

k̄∗
v∗

(1− µe∗G∗ (ω̄∗))

(̂̃Rkt − πt)+
Rd∗
π∗ez

∗
∗

n∗
v∗
n̂t−1(

R̃k∗
π∗ez

∗
∗

(1− µe∗G∗ (ω̄∗))−
Rd∗
π∗ez

∗
∗

)
k̄∗
v∗

(
q̂kt−1 + ̂̄kt−1

)
− µe∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗
∗

k̄∗
v∗

[
µ̂et−1 + ζG,σω σ̂ω,t−1

]
−µe∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗
∗

k̄∗
v∗
ζG,ω̄

[
− 1

ζz,ω̄%∗

(
n̂t−1 − q̂kt−1 − ̂̄kt−1

)
− 1

ζz,ω̄

(̂̃Rkt − R̂dt−1 + ζz,σω σ̂ω,t−1 + ζz,µe µ̂
e
t−1

)]
Collecting terms yields

v̂t = −ẑt + ζv,R̃k

(̂̃Rkt − πt)− ζv,R (R̂dt−1 − πt
)

+ ζv,qK

(
q̂kt−1 + ̂̄kt−1

)
+ ζv,nn̂t−1

−ζv,µe µ̂et−1 − ζv,σω σ̂ω,t−1

(2.45)

with

ζv,R̃k ≡ R̃k∗
π∗ez

∗
∗

k̄∗
v∗

[
1− µe∗G∗ (ω̄∗)

(
1−

ζG,ω̄
ζz,ω̄

)]
ζv,R ≡ Rd∗

π∗ez
∗
∗

k̄∗
v∗

[
1− n∗

k̄∗
+ µe∗G∗ (ω̄∗)

R̃k∗
Rd∗

ζG,ω̄
ζz,ω̄

]
ζv,qK ≡ R̃k∗

π∗ez
∗
∗

k̄∗
v∗

[
1− µe∗G∗ (ω̄∗)

(
1 +

ζG,ω̄
ζz,ω̄%∗

)]
− Rd∗
π∗ez

∗
∗

k̄∗
v∗

ζv,n ≡ Rd∗
π∗ez

∗
∗

n∗
v∗

+
R̃k∗
π∗ez

∗
∗

k̄∗
v∗
µe∗G∗ (ω̄∗)

ζG,ω̄
ζz,ω̄%∗

ζv,µe ≡ µe∗G∗ (ω̄∗)
R̃k∗
π∗ez

∗
∗

k̄∗
v∗

(
1− ζG,ω̄

ζz,µe

ζz,ω̄

)
ζv,σω ≡ µe∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗
∗

k̄∗
v∗
ζG,ω̄

(
ζG,σω
ζG,ω̄

− ζz,σω
ζz,ω̄

)
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Finally, substituting this expression into 2.43 we get:

n̂t = γ∗
v∗
n∗
γ̂t +

we∗
n∗
ŵet − γ∗

v∗
n∗
ẑt

+ζn,R̃k

(̂̃Rkt − πt)− ζn,R (R̂dt−1 − πt
)

+ ζn,qK

(
q̂kt−1 + ̂̄kt−1

)
+ ζn,nn̂t−1

−ζn,µe µ̂et−1 − ζn,σω σ̂ω,t−1

(2.46)

with

ζn,R̃k ≡ γ∗
R̃k∗
π∗ez

∗
∗

(1 + %∗)

[
1− µe∗G∗ (ω̄∗)

(
1−

ζG,ω̄
ζz,ω̄

)]
ζn,R ≡ γ∗

Rd∗
π∗ez

∗
∗

(1 + %∗)

[
1− n∗

k̄∗
+ µe∗G∗ (ω̄∗)

R̃k∗
Rd∗

ζG,ω̄
ζz,ω̄

]
ζn,qK ≡ γ∗

R̃k∗
π∗ez

∗
∗

(1 + %∗)

[
1− µe∗G∗ (ω̄∗)

(
1 +

ζG,ω̄
ζz,ω̄%∗

)]
− γ∗

Rd∗
π∗ez

∗
∗

(1 + %∗)

ζn,n ≡ γ∗
Rd∗
π∗ez

∗
∗

+ γ∗
R̃k∗
π∗ez

∗
∗

(1 + %∗)µ
e
∗G∗ (ω̄∗)

ζG,ω̄
ζz,ω̄%∗

ζn,µe ≡ γ∗µ
e
∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗
∗

(1 + %∗)

(
1− ζG,ω̄

ζz,µe

ζz,ω̄

)
ζn,σω ≡ γ∗µ

e
∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗
∗

(1 + %∗)ζG,ω̄

(
ζG,σω
ζG,ω̄

− ζz,σω
ζz,ω̄

)
Now normalize the shocks,

σ̃ω,t ≡ ζsp,σω σ̂ω,t (2.47)

µ̃et ≡ ζsp,µe µ̂et (2.48)

γ̃t ≡ γ∗
v∗
n∗
γ̂t (2.49)

so that the relevant log-linear equations, (2.42) and (2.46), become:

Et

[̂̃Rkt+1 − R̂dt
]

= ζsp,b

(
q̂kt + ̂̄kt − n̂t)+ σ̃ω,t + µ̃et (2.50)

and

n̂t = ζn,R̃k

(̂̃Rkt − πt)− ζn,R (R̂dt−1 − πt
)

+ ζn,qK

(
q̂kt−1 + ̂̄kt−1

)
+ ζn,nn̂t−1

+γ̃t +
we∗
n∗
ŵet − γ∗

v∗
n∗
ẑt −

ζn,µe

ζsp,µe
µ̃et−1 −

ζn,σω
ζsp,σω

σ̃ω,t−1

(2.51)

Log-linearization of 2.15 and 2.14 yield:

̂̃Rkt − πt =
rk∗

rk∗ + (1− δ)
r̂kt +

(1− δ)
rk∗ + (1− δ)

q̂kt − q̂kt−1, (2.52)

and 1.93.

41



2.0.7 Log-linear distribution

Consider

lnω ∼ N
(
mω, σ

2
ω

)
(2.53)

which has the properties

E [ω] = emω+ 1
2
σ2
ω (2.54)

In order to get E [ω] = 1 we need to set

mω = −1

2
σ2
ω (2.55)

This implies that the pdf is

f (ω) =
1

ωσω
√

2π
e
− 1

2

(
lnω+ 1

2σ
2
ω

σω

)2

(2.56)

Define

φ (z) ≡ 1√
2π
e−

1
2
z2

(2.57)

Φ (z) ≡
∫ z

−∞

1√
2π
e−

1
2
x2
dx (2.58)

for which we can use matlab functions normpdf and normcdf. Given that Pr[ω ≤ ω̄] =

Pr[logω ≤ log ω̄] the CDF is

F (ω̄) = Φ

(
ln ω̄ + 1

2σ
2
ω

σω

)
(2.59)

We also need the following expression

z = Φ−1
(
F̄
)

(2.60)

for which we can use an inverse cdf function also available in matlab as norminv.

The partial expectation obeys

E [ω|ω > ω̄] = Φ

(
1
2σ

2
ω − ln ω̄

σω

)
= 1− Φ

(
ln ω̄ − 1

2σ
2
ω

σω

)
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which implies that

G (ω̄) ≡
∫ ω̄

0
ωf (ω) dω =

∫ ∞
0

ωf (ω) dω −
∫ ∞
ω̄

ωf (ω) dω

= Φ

(
ln ω̄ − 1

2σ
2
ω

σω

)
(2.61)

Finally we define

Γ (ω̄) ≡
∫ ω̄

0
ωf (ω) dω + ω̄

∫ ∞
ω̄

f (ω) dω

= ω̄

[
1− Φ

(
ln ω̄ + 1

2σ
2
ω

σω

)]
+G (ω̄) (2.62)

If we define

zω ≡
ln ω̄ + 1

2σ
2
ω

σω
(2.63)

then we get

G (ω̄) = Φ (zω − σω) (2.64)

and

Γ (ω̄) = ω̄ [1− Φ (zω)] + Φ (zω − σω) (2.65)

In order to compute the derivatives, first notice that we can write

φ (zω − σω) = ω̄φ (zω) (2.66)

and

φ′ (z) = −zφ (z) , ∀z (2.67)

Using this result we can write the derivatives as follows:

G′ (ω̄) =
1

σω
φ (zω) (2.68)

G′′ (ω̄) = − zω

ω̄σω
G′ (ω̄) = − zω

ω̄σ2
ω

φ (zω) (2.69)

Γ′ (ω̄) =
Γ (ω̄)−G (ω̄)

ω̄
= 1− Φ (zω) (2.70)

Γ′′ (ω̄) = − 1

ω̄
G′ (ω̄;σω) = − 1

ω̄σω
φ (zω) (2.71)
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and
∂zω

∂σω
= −

(
zω

σω
− 1

)
(2.72)

Gσω (ω̄) = − z
ω

σω
φ (zω − σω) (2.73)

G′σω (ω̄) = −φ (zω)

σ2
ω

[1− zω (zω − σω)] (2.74)

Γσω (ω̄) = −φ (zω − σω) (2.75)

Γ′σω (ω̄) =

(
zω

σω
− 1

)
φ (zω) (2.76)

where we use notation f ′ (ω̄) ≡ ∂f (ω̄) /∂ω̄ and fσω (ω̄) ≡ ∂f (ω̄) /∂σω, for f ∈ {G,Γ}.

2.0.8 Elasticities

First notice that we have several elasticities defined as

ζb,x ≡
∂
∂x

[{
1− Γ (ω̄) + Γ′(ω̄)

Γ′(ω̄)−µe∗G′(ω̄) [Γ (ω̄)− µe∗G (ω̄)]
}
R̃k∗
Rd∗
− Γ′(ω̄)

Γ′(ω̄)−µe∗G′(ω̄)

]
{

1− Γ (ω̄) + Γ′(ω̄)
Γ′(ω̄)−µe∗G′(ω̄) [Γ (ω̄)− µe∗G (ω̄)]

}
R̃k∗
Rd∗

x

which we can rewrite as

ζb,x ≡
∂Ψ̃
∂x x{

1− Γ (ω̄) + Γ′(ω̄)
Γ′(ω̄)−µe∗G′(ω̄) [Γ (ω̄)− µe∗G (ω̄)]

}
R̃k∗
Rd∗

with

Ψ̃ ≡
{

1− Γ (ω̄) +
Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)
[Γ (ω̄)− µe∗G (ω̄)]

}
R̃k∗
Rd∗
− Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)

= [1− Γ (ω̄)]
R̃k∗
Rd∗

+
Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)

[
[Γ (ω̄)− µe∗G (ω̄)]

R̃k∗
Rd∗
− 1

]
(2.77)

Elasticities w.r.t. ω̄

First write

∂Ψ̃

∂ω̄
= −Γ′∗ (ω̄∗)

R̃k∗
Rd∗

+

[
[Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)]

R̃k∗
Rd∗
− 1

]
Γ′′ (ω̄) [Γ′ (ω̄)− µe∗G′ (ω̄)]− Γ′ (ω̄) [Γ′′ (ω̄)− µe∗G′′ (ω̄)]

[Γ′ (ω̄)− µe∗G′ (ω̄)]2

+
Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)

[
Γ′ (ω̄)− µe∗G′ (ω̄)

] R̃k∗
Rd∗
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and simplify to

∂Ψ̃

∂ω̄
= µe∗

{
[Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)]

R̃k∗
Rd∗
− 1

}
G′′ (ω̄) Γ′ (ω̄)−G′ (ω̄) Γ′′ (ω̄)

[Γ′ (ω̄)− µe∗G′ (ω̄)]2

= µe∗
n∗
k̄∗

Γ′′ (ω̄)G′ (ω̄)−G′′ (ω̄) Γ′ (ω̄)

[Γ′ (ω̄)− µe∗G′ (ω̄)]2

where we used 2.24. We can plug this expression into the elasticity to obtain

ζb,ω̄ =
µe∗

n∗
k̄∗

Γ′′∗ (ω̄∗)G′∗(ω̄∗)−G′′∗ (ω̄∗)Γ′∗(ω̄∗)

[Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)]
2{

1− Γ∗ (ω̄∗) + Γ′∗ (ω̄∗)
Γ∗(ω̄∗)−µe∗G∗(ω̄∗)
Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)

}
R̃k∗
Rd∗

ω̄∗ (2.78)

We also have from 2.41

ζz,ω̄ ≡
Γ′∗ (ω̄∗)− µe∗G′∗ (ω̄∗)

Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)
ω̄∗ (2.79)

Notice that if we plug everything into

ζsp,b = −
ζb,ω̄
ζz,ω̄

1− ζb,ω̄
ζz,ω̄

n∗
k̄∗

1− n∗
k̄∗

=
(n∗
k̄∗
− 1)−1

1− ζz,ω̄
ζb,ω̄

=
(n∗
k̄∗
− 1)−1

1− Γ′(ω̄)−µe∗G′(ω̄)
Γ(ω̄)−µe∗G(ω̄)

{
1−Γ(ω̄)+Γ′(ω̄)

Γ(ω̄)−µe∗G(ω̄)

Γ′(ω̄)−µe∗G′(ω̄)

}
R̃k∗
Rd∗

µe∗
Γ′′(ω̄)G′(ω̄)−G′′(ω̄)Γ′(ω̄)

(Γ′(ω̄)−µe∗G′(ω̄))2
n∗
k̄∗

(2.80)

this becomes

ζsp,b =

n∗
k̄∗

1−n∗
k̄∗

1 +

{
[1−ω̄∗[1−Φ(zω∗ )]−Φ(zω∗ −σω∗)]

ω̄∗[1−Φ(zω∗ )]+(1−µe∗)Φ(zω∗ −σω∗)

[
1−Φ(zω∗ )− µe∗

σω∗
φ(zω∗ )

]
+1−Φ(zω∗ )

}
R̃k∗
Rd∗

µe∗φ(zω∗ )
ω̄∗σ2

ω∗

φ(zω∗ )−zω∗ [1−Φ(zω∗ )][
1−Φ(zω∗ )−

µe∗
σω∗ φ(zω∗ )

]2
n∗
k̄∗

(2.81)

Elasticity of w.r.t. σω

First we compute the derivative

∂Ψ̃

∂σω
= −Γσω (ω̄)

R̃k∗
Rd∗

+
Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)
[Γσω (ω̄)− µe∗Gσω (ω̄)]

R̃k∗
Rd∗

+
Γ′σω (ω̄) [Γ′ (ω̄)− µe∗G′ (ω̄)]− Γ′ (ω̄)

[
Γ′σω (ω̄)− µe∗G′σω (ω̄)

]
[Γ′ (ω̄)− µe∗G′ (ω̄)]2

[
[Γ (ω̄)− µe∗G (ω̄)]

R̃k∗
Rd∗
− 1

]
hence

∂Ψ̃

∂σω
=

1− µe∗
Gσω (ω̄)
Γσω (ω̄)

1− µe∗
G′(ω̄)
Γ′(ω̄)

− 1

Γσω (ω̄)
R̃k∗
Rd∗

+ µe∗
n∗
k̄∗

G′ (ω̄) Γ′σω (ω̄)− Γ′ (ω̄)G′σω (ω̄)

[Γ′ (ω̄)− µe∗G′ (ω̄)]2
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so that

ζb,σω =

(
1−µe∗

Gσω∗(ω̄∗)
Γσω∗(ω̄∗)

1−µe∗
G′∗(ω̄∗)
Γ′∗(ω̄∗)

− 1

)
Γσω∗ (ω̄∗)

R̃k∗
Rd∗

+ µe∗
n∗
k̄∗

G′∗(ω̄∗)Γ
′
σω∗(ω̄∗)−Γ′∗(ω̄∗)G

′
σω∗(ω̄∗)

[Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)]
2

[1− Γ∗ (ω̄∗)]
R̃k∗
Rd∗

+ Γ′∗(ω̄∗)
Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)

(
1− n∗

k̄∗

) σω∗

(2.82)

We also have

ζz,σω =
Γσω∗ (ω̄∗)− µe∗Gσω∗ (ω̄∗)

Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)
σω∗. (2.83)

Elasticity of w.r.t. µe

First solve
∂Ψ̃

∂µe
= − Γ′ (ω̄)G′ (ω̄)

[Γ′ (ω̄)− µe∗G′ (ω̄)]2
n∗
k̄∗
− Γ′ (ω̄)G (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)

R̃k∗
Rd∗

so that

ζb,µe = −
Γ′∗(ω̄∗)G

′
∗(ω̄∗)

Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)
n∗
k̄∗

+ Γ′∗ (ω̄∗)G∗ (ω̄∗)
R̃k∗
Rd∗

[1− Γ∗ (ω̄∗)] [Γ′∗ (ω̄∗)− µe∗G′∗ (ω̄∗)]
R̃k∗
Rd∗

+ Γ′∗ (ω̄∗)
(

1− n∗
k̄∗

)µe∗ (2.84)

We also have

ζz,µe = − G∗ (ω̄∗)

Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)
µe∗. (2.85)
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