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Reproducing Kernel of Bessel Potential space

The standard definition of Bessel potential space H* can be found in ([1], [2], [6], [11], [12]). Here the
normal splines will be constructed in the Bessel potential space H? defined as:

H:(R") = {W €S, (% +|€]2) > Fly] € L2(R”)}, £>0, s> %

where S’'(R™) is space of L. Schwartz tempered distributions, parameter s may be treated as a
fractional differentiation order and F[¢] is a Fourier transform of the ¢. The parameter ¢ introduced
here may be considered as a "scaling parameter". It allows to control approximation properties of the
normal spline which usually are getting better with smaller values of ¢, also it may be used to reduce
the ill-conditioness of the related computational problem (in traditional theory ¢ = 1).

Theoretical properties of spaces H? at e > 0 are identical — they are Hilbert spaces with inner product
(o) = [ (& + 6Py FlplF d¢

and norm

e = (o, ) = 1€ + 1€1%)* Flelllz, -

el

It is easy to see that all ||
H*(R") = H{(R"™).

g: norms are equivalent. It means that space HZ(R") is equivalent to

Let's describe the Holder spaces C}(R"),t > 0 ([9], [2]).

Definition 1. We denote the space

S(R") = {f!f € C(R™), sup [a"D° f(z)] < o0, Ve, B € N"}

zER"

as Schwartz space (or space of complex-valued rapidly decreasing infinitely differentiable functions
defined on R™) ([6], [7]).

Below is a definition of Holder space C}(R") [9]:

Definition 2. If 0 <t = [t] + {t},[t] is non-negative integer, 0 < {t} <1, then C}(R") denotes the
completion of S(R™) in the norm

CY(R") = {#1f € O (B"), I lle; < oo}

D f(z) — D"/ (y)
Flleg = Ifllgn + sup
1£lle = £l Zﬂm P—T

Y

la|=[

[fllgn = sup [D*f(z)], Vo : || < [t].
b rzER"
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Space C'Igt] (R™) consists of all functions having bounded continuous derivatives up to order [¢]. It is
easy to see that C}(R") is Banach space [9].

Connection of Bessel potential spaces H*(R") with the spaces Cf(R") is expressed in Embedding
theorem ([9], [2]).

Embedding Theorem: If s =n/2+t, where ¢t non-integer, ¢t > 0, then space H*(R") is continuously
embedded in C}(R").

Particularly from this theorem follows that if f € H?/2+1/2(R”), corrected if necessary on a set of
Lebesgue measure zero, then it is uniformly continuous and bounded. Further if f € H?/2+1/2+"(R”), T
— integer non-negative number, then it can be treated as f € C"(R"), where C"(R") is a class of
functions with r continuous derivatives.

It can be shown ([3], [11], [8], [4], [5]) that function

VS(n’:Cag) - CV(”a3a€)(€|"7 - m|)57%I(8*§ (5|77 - :L‘|) ’
_ 871725 I I 0 ﬁ
cV(n,s,a)—2871(271_)”/%‘(8),176 , tER", £€>0,8> 5

is a reproducing kernel of HZ (R"™) space. Here K, is modified Bessel function of the second kind [10].
The exact value of cy(n,s,e) is not important here and will be set to \/g for ease of further

calculations.
This reproducing kernel is known as Matérn kernel [4,13].

The kernel K., becomes especially simple when « is half-integer.

In this case it is expressed via elementary functions (see [10]):

T 1d r+1
K, t) = _tr+1 = _¢

™ . r+ k)!
K, 1)5(t) = \/;texp(—t) ; k:!(r(——;:)!)(%)k , (r=0,1,...).

Let s, =r+2+1,7r=0,1,..., then H¥(R") is continuously embedded in Cj(R") and its
reproducing kernel with accuracy to constant multiplier can be presented as follows
- (T + k)' r—k
Viisir(n,@,6) = exp(—eln—z|) ) m(ﬁm —z)'7,

k=0
(r=0,1,...).
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In particular we have:

V§+%(7’7x75) - exp(—€|77 - £C|) 9
Vvl+%+%(77’w’8) = eXP(—5|77 - $|)(1 + 8|77 - LL‘|) )
Varaoi(n,@,6) = exp(—eln — z))(3 + 3eln — z| + &*[n — z[*) .
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