
Doublecpp: double dispatch in C++

User’s manual - Version 0.6

Lorenzo Bettini
Dipartimento di Sistemi e Informatica, Università di Firenze

Viale Morgagni 65, 50134 Firenze, Italy

http://www.lorenzobettini.it

March 31, 2009

Contents

1 Introduction 1

2 Installation 5

3 doublecpp options 6

4 Some examples 10

5 Advanced issues 12
5.1 Automatic code inspection . 14

6 Known limitations 14

1 Introduction

doublecpp is a preprocessor for C++ that handles a new linguistic construct for defining branches of
a multi-method [DG87, MHH91, Cas95b, BC97]. The “right” branch of such a method will be selected
dynamically at run-time according to the actual type of the object on which the method is invoked
and to the actual type of the first argument (double dispatch). This document is a manual for users of
doublecpp; the reader who’s interested in further details about the implementation (and the underlying
theory) of doublecpp is referred to [BCV05, BCV06], which are also available from my home page.

Let us provide some definitions, so that the aim of this program can be fully achieved:

receiver it is the object on which a method is invoked, for instance in the following code:

MyObj *obj = new MyObj;
MyPar *par = new MyPar;
obj->m(par);

obj is the receiver of the message (method) m;

1

class A {
// fields...
// methods...

public:
virtual branches m
virtual T (T1 *t) { ... };
virtual T (T2 *t) { ... };
...

endbranches

virtual branches n
virtual S (S1 *t, V1 *v) { ... };
virtual S (S2 *t, V1 *v) { ... };
...

endbranches
};

#include "a.h"

class B : public A {
// fields...
// methods...

public:
virtual branches m
virtual T (T2 *t) { ... };
virtual T (T3 *t) { ... };
...
endbranches

virtual branches n
virtual S (S3 *t, V1 *v) { ... };
...
endbranches

};

Figure 1: A first example in C++ with double dispatch

double dispatch the ability of dynamically selecting a method not only according to the actual type
of the receiver (single dispatch or dynamic binding), but also to the actual type of the argument
(when all arguments are considered, we have multiple dispatch);

multi-method a collection of overloaded methods associated to the same message; the selection takes
place dynamically according to multiple dispatch. However, in our context, we limit our multi
methods to double dispatch. Each method in this collection is called a branch.

client, target we refer to classes (or structs1) defining and redefining branches of a multi method as the
clients of the target classes (or structs), i.e., those used for declaring the type of the first parameter
of a branch.

Trying to summarize the features of the new linguistic construct, we can say that it allows to define
methods in overloading, but the selection of the “right version” does not take place statically (as it
happens in C++) according to the static type of the argument, but dynamically according to the actual
type of the (first) argument (apart from, of course, the actual type of the receiver). In a sense, it provides
dynamic overloading capabilities.

Let us illustrate the new construct by the example in Figure 1 declares two multi methods, m and n. In
each class, all the branches of a multi method represent a standard definition of a C++ overloaded method;
as a consequence, for instance, the return type is not used in method selection. However, differently from
C++, multi methods with all their branches are implicitly inherited in derived classes (of course, if they
are not private in the parent class). Message passing is the key point, from the semantic point of view.
Besides including the two standard mechanisms of method invocation, i.e., static overloading and dynamic
binding (single dispatch), multi methods allow to model the additional mechanism of double dispatch: if
m is declared as a multi method, then the invocation of m with the suffix _DB, m_DB, is interpreted by
using dynamic overloading. Namely, when m_DB is invoked, the selection among the available branches
takes place dynamically, choosing the most specialized branch among the ones available in the classes,
according to the dynamic type of the receiver (as in standard single dispatch) and also according to the

1From now on, unless when required, we will use only the term class, also for struct.

2

dynamic type of the first parameter (i.e., double dispatch)2. Notice that, since we provide only double
dispatch (instead of multiple dispatch), the other parameters should be of the same type, otherwise their
types would be used statically for the selection (as in standard C++ overloading).

Thus, this extension provides dynamic overloading. For instance, if we have the following code
(assuming that Tj is a subclass of Ti if i ≤ j):

A *a = new A;
T1 *t = new T2;
a->m(t); // static overloading
a->m_DB(t); // dynamic overloading

then, the first method invocation is performed according the static overloading semantics, i.e., A::m(T1
*) is (statically) selected, but the second method invocation (dynamically) selects A::m(T2 *).

Moreover, the new linguistic construct, also enables covariant specialization of the branches of a multi-
method, i.e., subclasses are allowed to redefine a method also by specializing its argument (we refer the
reader to [Cas95a] for a clear treatment of this subject): indeed, B redefines the branch m(T2 *) but
also specializes the multi-method by adding a new branch, m(T3 *), where T3 is a subclass of T2. Again,
the most specialized branch of a multi-method will be dynamically selected for invocation on objects
belonging to subclasses; thus, considering the following code:

A *a = new B;
T1 *t = new T1;
a->m_DB(t); // dynamic overloading
t = new T2;
a->m_DB(t); // dynamic overloading
t = new T3;
a->m_DB(t); // dynamic overloading

the first invocation will select A::m(T1 *), the second one will select B::m(T2 *), because B has redefined
the branch m(T2 *) and the third one will select B::m(T3 *), because B has defined a specialized branch
for m(T3 *). This shows that our multi methods are different from the encapsulated multi methods
of [BCC+95, Cas97], in that the receiver and the first parameter participate together in the dynamic
selection of the method as in [Cas95b], while in the case of encapsulated multi methods, the receiver
has the precedence over the parameters. Moreover, in encapsulated multi methods, the (re)definition
of a multi method in a subclass completely overrides the old one (see [BCC+95]). This means that the
branches defined in the superclass are not automatically inherited in a subclass that specializes (i.e., adds
a branch) a multi method. For instance, in Figure 1, class B would not inherit the two branches of n
defined in A, with encapsulated multi methods.

Let us observe that C++ scoping rules are still valid, so the programmer can rule the dynamic selection
of a specific branch by using the :: scope resolution operator. For instance, if in the code above we
replace a->m_DB(t) with a->A::m_DB(t) we basically restrict the dynamic branch selection to the scope
of class A. Thus, the specialized branch B::m(T3 *) will not be considered during branch selection.
However, since dynamic binding is still employed for selecting the implementation of a specific branch,
B::m(T2 *) will be selected (summarizing the three method invocations above will select A::m(T1 *),
B::m(T2 *) and B::m(T2 *) again, respectively). This holds because we implicitly consider each method
as virtual. In the following we will show how the programmer can effectively specify whether branches
are virtual or not.

2Instead of implicitly adding a method with a suffix, DB, we could have introduced another keyword in the language,
e.g., ddinvok(x->m), or another operator, e.g., x=>m, with the semantics of double dispatch invocation; however, we think
that our solution is simpler and, furthermore, it does not require to translate the code that invokes methods with double
dispatch.

3

multi-method ::= virtual branches name branches endbranches
branches ::= branch

| branch branches
branch ::= virtual type (type * arg) ;

| virtual type (type * arg) { body } ;
virtual ::= virtual | ε

Table 1: Syntax for multi-method definition. name is the name of the multi-method, type is a class
defined by the user and method definition is a standard C++ method definition.

The syntax for multi-method definition is in Table 1. Notice that in this version of doublecpp the
first parameter of a multi-method branch must always be a pointer, and that all branches have to be
terminated with ;.

Declaring a multi method as virtual ensures that all the branches in the class hierarchy are considered
during branch selection to execute the most specialized one. Declaring a single branch as virtual, instead,
has exactly the same meaning of declaring a (overloaded) method as virtual in C++. Finally, we notice
that, by using virtual for multi method and branches in appropriate combinations, one can implement
several flavors of multi method semantics, even encapsulated multi methods (e.g., by not using virtual at
all).

IMPORTANT: In the previous releases of doublecpp all multi methods and branches were
automatically considered virtual. For backward compatibility, and also for those who do not
feel like specifying virtual for all their multi methods and branches, we now provide the
option --assume-virtual (see Section 3).

C++ programs using this new linguistic construct have to be preprocessed by the doublecpp program,
that will produce standard C++ code, with the same semantics described above. doublecpp will inspect
both the classes using branches, their superclasses, and the classes used as parameters for branches of
multi-methods (i.e., target classes). These classes can be spread in separate files and do not need to be
written in the same file.

Remark. #include headers are correctly inspected by doublecpp. However, only files that
are specified in double quotes (") are inspected, while those specified in < > are not. You
can still force a file specified in " not to be inspected by using the command line option
--excludeheaders explained later in Section 3, page 9.

By default, doublecpp is based on the following assumption:

if a class MyClass has not already been found in an analyzed source, doublecpp will try to
read a source with the same name of the class in lower case, e.g., myclass.h in this example.

If you do not feel comfortable with this “automatic” behavior and want to explicitly #include target
class’ header files, you can disable it with the command line option --dont-infer-headers (See Section 3
for the complete list of options). With this option, class A in Figure 1 must explicitly #include the header
files for Ti and Si.

Notice that doublecpp should be called on the last class of the hierarchy (the most derived) that
introduces a new branch or redefines a previously defined branch. Assuming that the classes for the
example in Figure 1 are developed in the following sources:

A a.h and a.cc
B b.h and b.cc
T1, T2, T3 t3.h and t3.cc
S1, S2, S3 s3.h and s3.cc
V1 v1.h and v1.cc

4

// main.cc
#include "b.hpp"
#include "t3.hpp"
#include "s3.hpp"
#include "v1.h"

int main() {
A *a = new B;
T1 *t = new T1;
a->m(t); // static overloading
a->m_DB(t); // dynamic overloading
t = new T2;
a->m_DB(t); // dynamic overloading
t = new T3;
a->m_DB(t); // dynamic overloading

return 0;
}

Figure 2: The main source using classes in Figure 1

then doublecpp should be invoked as follows:

doublecpp -i b.h

This will generate the following files:

a.hpp and a.cpp for A
b.hpp and b.cpp for B
t3.hpp and t3.cpp for T1, T2, T3
s3.hpp and s3.cpp for S1, S2, S3

nothing for V1

The .hpp header files contain the modified (preprocessed) version of the original classes, and thus
they contain standard C++ code. This means that all the other sources of our project should include
these files and not the original .h ones. The .cpp files contain the definition of the additional methods
needed for implementing the double dispatch semantics, thus they are complementary to the .cc, i.e.,
both the .cc and .cpp sources are to be linked in the final program.

Finally, the code using the preprocessed code, e.g., the main of our program can be written as shown
in Figure 2. Notice that, since v1.h was not preprocessed it can be included as it is.

Finally, the program can be built with the following command line:

g++ -o test main.cc a.cc b.cc t3.cc s3.cc v1.cc a.cpp b.cpp t3.cpp s3.cpp

NOTE: If this behavior may seem to require to know too many things about the classes of the
program and may force to modify existing code using T1, ..., S1, ..., in Section 3 we will see how to
instruct doublecpp so that fewer files are generated.

2 Installation

doublecpp comes with sources being under the GPL license, and can be downloaded from its home page:

5

http://doublecpp.sourceforge.net

First, you have to unpack the tarball file doublecpp-x.x.x.tar.gz, where x.x.x is the release version,
in an appropriate directory. Then, once you entered that directory, it can be compiled and installed like
any other GNU programs, i.e., with the typical command sequence:

./configure
make
make install

remember that by default this will install the program and all its files starting from the directory
/usr/local, thus you have to be super user in order to do that. Otherwise, should you want to perform
the installation in a different (possibly personal) directory, say /myhome/usr, you have to pass this option
to the configure script:

./configure --prefix=/myhome/usr

Optionally, before make install, you may want to run make check, that tries to compile some
programs preprocessed with doublecpp. Notice that you will experience problems if you have a version of
gcc earlier than 3.x, due to a non-standard treatment of using clause for explicitly inheriting overloaded
methods from a super class (this is part of the code generated by doublecpp). So you need to install a
more recent version of gcc.

You can also obtain the most recent sources via anonymous CVS (just hit enter when prompted for
the password):

cvs -d:pserver:anonymous@doublecpp.cvs.sourceforge.net:/cvsroot/doublecpp login

cvs -z3 -d:pserver:anonymous@doublecpp.cvs.sourceforge.net:/cvsroot/doublecpp co -P doublecpp

If you obtain sources from CVS, before running configure, you must run the script autogen.sh; This
will run the autotools commands in the correct order, and also copy possibly missing files. You should
have installed recent versions of automake and autoconf in order for this to succeed. You will also need
flex and bison.

3 doublecpp options

doublecpp supports the options reported in Table 2. In order to fully understand the following options
please refer to the definitions in Section 1.

We will now go into details of the most relevant options:

--force : since doublecpp may have to preprocess many files, and since this may require the compilation
of many sources in the program, by default, doublecpp will regenerate only the sources that actually
need to (if the preprocessing results in a class that it is exactly the same as the one generated in a
previous preprocessing it will not write the changes). This option allows to force the regeneration
of sources.

--invade-target : if a class C defined in the source c.h is used only as the first parameter of a branch
(and it does not define a multi-method itself), with this option the result of the preprocessing will
not be written into c.hpp but directly in the original file c.h. This makes programming easier since
the code that uses C can still safely include c.h even after another class uses it for a parameter of
a branch of a multi-method. IMPORTANT: please make a backup of the original file, since with
this option it will be directly modified (and in case of failures or bugs of doublecpp it may get
corrupted). NOTE: this is the encouraged way of using doublecpp.

6

-h, --help Print help and exit

-V, --version Print version and exit

-i, --input=FILENAME input file (default std input)

-v, --verbose verbose mode on

-F, --force force regeneration of output code

--invade-target directly modify sources of targets

--modular instead of modifying targets, generate RTTI

tests and casts. Thus targets are not

modified

--clean-targets remove possible previously modifications

applied to target classes. It makes

sense only when used together with

--modular option

--input-header-ext=STRING input header file extension (default=‘h’)

--output-header-ext=STRING output header file extension (default=

‘hpp’)

--output-source-ext=STRING output source file extension (default=

‘cpp’)

--output-header-suff=STRING output header file suffix (def: none)

--output-source-suff=STRING output source file suffix (def: none)

-r, --rename-overloaded rename overloaded methods (default=off)

--rename-suffix=STRING suffix for renamed method (default=‘_’)

--rename-db-suffix=STRING suffix for renamed double disp method

(default=‘_DB’)

--no-linenum do not generate #line statements

--dont-infer-headers do not use the name of the class to infer

the header file

--assume-multimeth-virtual assume all multimethods as virtual

--assume-branch-virtual assume all branches of multimethods as

virtual

--assume-virtual assume all multimethods and all branches of

multimethods as virtual (i.e., equivalent

to --assume-multimeth-virtual and

--assume-branch-virtual)

--stats print some statistics, e.g., number of

scanned files

--test-mode even with errors exit with 0 (this is only

for testing purposes)

--sourcepath=STRING where to search for include files, and for

files that can be modified

--excludeheaders=STRING header files that must not be processed

Table 2: doublecpp command line options

7

--modular : if you use this option the target classes will not be modified. Thus, the whole program will
be modular in the sense that the target classes will not depend on the client classes. The generated
code, however, will be less efficient, since the right branch will be selected using a cascade of if
statements, employing RTTI (i.e., dynamic_cast<>).

--clean-targets : if you switch to modular mode, you should also use this option (at least the first
time you use --modular in order to remove code inserted in the target classes. If you switch to
modular mode after using --invade-target you should use also use --invade-target together
with --clean-targets so that the original target sources are restored to their original form.

--input-header-ext : by default, as hinted above, doublecpp looks for a class not already analyzed in
a source with the same name of class (in lower case) and extension .h; with this option it is possible
to change this file extension.

--output-header-ext : the extension for the generated header file.

--output-source-ext : the extension for the generated C++ source file.

--output-header-suff : a suffix to be added to the generated header file (before the extension).

--output-source-suff : a suffix to be added to the generated C++ source file (before the extension).

--rename-overloaded : instead of creating a method _DB for a multi-method m, the original name m is
used for the double dispatch semantics, while the branches are renamed. This option is discouraged.

--rename-suffix : suffix for the renamed overloaded methods (see --rename-overloaded).

--rename-db-suffix : the suffix used for creating the additional method with double dispatch semantics
(the default is _DB).

--no-linenum : doublecpp inserts #line directives in the generated files, so that compiler errors refer
to the original sources, and debugging is easier. If you wish to disable this, you can use this option.

--dont-infer-headers : By default, as explained in Section 1, if doublecpp encounters a class name
that has not already been inspected, it will try to read a header file with the same name of the
class in lower case; you can disable this “inference” behavior using this option (in such case you
must explicitly #include all the appropriate header files, otherwise you will get an error).

--assume-multimeth-virtual : if all your multi methods must be virtual, and you do not feel like
specifying the keyword virtual for them, you can use this option, and they will be automatically
considered as virtual.

--assume-branch-virtual : as above, but for branches.

--assume-virtual : All multi methods and all branches of multi methods are considered virtual.

--stats : Print some statistics, such as the number of inspected files, classes and elapsed time.

--test-mode : is only for testing purposes; with this option, doublecpp will return 0 (i.e., success) even
in case of errors (e.g., type errors), but not in case of failed assertions.

--sourcepath : doublecpp does not use environment variables of the C++ compiler, such as, e.g.,
INCLUDE to search for a header file. We do consider this as a feature, since we wouldn’t want a
system header file to be modified by doublecpp; thus we require the programmer to specify all the
paths (the current directory is always inspected by default) where the program header files (that
must be processed) are. Notice that you can use this option many times in the command line.

8

--excludeheaders : this allows to force doublecpp not to examine specific header files. As hinted in
the remark at page 4 files specified in < > are not inspected anyway.

We believe that the most important option is --invade-target in that it can limit the number of
files generated by the preprocessor, and does not require changes in sources that use target classes. For
instance, let us consider again the distribution of code in source files for the example in Figure 1:

A a.h and a.cc
B b.h and b.cc
T1, T2, T3 t3.h and t3.cc
S1, S2, S3 s3.h and s3.cc
V1 v1.h and v1.cc

now if we invoke doublecpp in the following way:

doublecpp -i b.h --invade-target

The only files that will be generated will be:

a.hpp and a.cpp for A
b.hpp and b.cpp for B

as for the sources of target classes, the original header sources will be modified by doublecpp3. Thus,
only the sources using class A and B need to refer to b.hpp, while sources using all the other target
classes can still refer to the original header files. In particular, the main source of Figure 2 will now
contain the following header include section:

// main.cc
#include "b.hpp"
#include "t3.h"
#include "s3.h"
#include "v1.h"

Finally, the program can be built with the following simpler command line:

g++ -o test main.cc a.cc b.cc t3.cc s3.cc v1.cc a.cpp b.cpp

As you may have understood, doublecpp by default modifies also the target classes (and if you use
--invade-target it will actually modify the original sources of the target classes). If you do not like this
behavior you can use the --modular command line option. Let us stress that the resulting code will be
more modular (since the target classes will not depend on the client classes) but also less efficient since the
right branch will be selected using a cascade of if statements, employing RTTI (i.e., dynamic_cast<>).

We suggest to use the modular mode during the development stage: less compilations will be required
since there will be less dependences among classes (client classes will depend on the target classes, but
not the other way round). You can then switch to standard mode before deploying your application,
making it far more efficient.

IMPORTANT: the code generated in standard mode is equivalent to the one generated in
modular mode: they have the same semantics.

3This is the main reason why we suggest to keep a backup of the original header files, in case doublecpp crashes somehow
during the modification of the header files.

9

Visitor
+visitElemA(ElemA)
+visitElemB(ElemB)

Visitor1
+visitElemA(ElemA)
+visitElemB(ElemB)

Visitor2
+visitElemA(ElemA)
+visitElemB(ElemB)

Elem
+accept(Visitor)

ElemA
+accept(v:Visitor)
+OperationA()

ElemB
+accept(v:Visitor)
+OperationB()

v->visitElemA(this); v->visitElemB(this);

Figure 3: Visitor pattern structure.

Of course, if you switch to modular mode you should also take care of “cleaning” the target classes
from previously generated code; you can easily do this by invoking doublecpp with --clean-targets
the first time you use --modular. If you used to use --invade-target option, you should use it also
when you use --clean-targets. Thus, in the previous example, if you wish to switch to modular mode
you have to invoke:

doublecpp -i b.h --invade-target --modular --clean-targets

4 Some examples

A typical example where dynamic overloading is very useful is when there are two separate class hierarchies
and the classes of a hierarchy have to operate on instances of classes of the second hierarchy according
to their dynamic types. This is quite a recurrent situation in object-oriented design, as hinted in the
introduction, since separation of responsibilities enhance class decoupling and thus re-usability. In such
situations, in order to avoid the awful use of RTTI and type casts, the design pattern Visitor [GHJV95]
can be used. The structure of the pattern is illustrated in Figure 3.

The idea behind this pattern is that the base class Visitor defines all the methods that have to operate
on the elements of the second hierarchy. The classes of the Elem hierarchy implement the method accept
by calling the method of the visitor corresponding to their actual type, passing this as argument. Then,
a client can perform an operation, implemented by a specific visitor subclass, by invoking the method
accept on an element:

Elem *elem = new ElemB;
Visitor *visitor = new Visitor1;
elem->accept(visitor);

This way, the method Visitor1::visitElemB will be finally executed, i.e., the method of the actual class
of the visitor corresponding to the actual class of the element. It is then easy to observe that the Visitor
pattern is basically a way of implementing the behavior of dynamic overloading and double dispatch in
a language that does not provide it.

While the result is basically the same of dynamic overloading, it requires additional effort to the
programmer, that has to explicitly program the dynamic dispatch mechanism. Furthermore, and this is
one of the main drawbacks of this pattern, a cyclic dependence raises from the structure of the pattern,
i.e., the visitor classes depend on all the concrete classes of the Elem hierarchy, and, on the other hand,
the Elem hierarchy depends on the Visitor hierarchy (because of the method accept). Introducing
a new Elem to handle requires changing the Visitor hierarchy. Introducing a new operation requires
introducing a new Visitor hierarchy. Both cases require a recompilation of the entire Elem hierarchy. A

10

class Visitor {

public:

virtual branches visit

virtual void (ElemA *t);

virtual void (ElemB *t);

endbranches

};

class ExtVisitor : public Visitor {

public:

virtual branches visit

virtual void (ElemA *t);

virtual void (ElemC *t);

endbranches

};

Figure 4: An implementation of the visitor in C++ with double dispatch

class Point {

int x, y;

public:

virtual branches equals

virtual bool (Point *p)

{ return

x == p->x &&

y == p->y; };

endbranches

};

class ColorPoint : public Point {

string color;

public:

virtual branches equals

virtual bool (ColorPoint *p)

{ return

Point::equals(p) &&

color == p->color; };

endbranches

};

Figure 5: An implementation of the binary method equals in C++ with double dispatch.

variant of the pattern, called Acyclic Visitor was proposed [Mar98] in order to limit these dependences,
but the solution makes use of dynamic casts

With our proposed language extension, the visitor classes can be easily programmed by defining a
multi-method visit with a branch for each Elem that has to be handled, as illustrated in Figure 4. The
Elem hierarchy does not have to be modified by the programmer: all the internal issues will be handled
by the preprocessor of the construct for multi methods. The programmer can visit an element by simply
calling visit_DB on any Elem instance. Furthermore, a subclass of Visitor can add a branch for a new
Elem subclass (as ExtVisitor for ElemC) without affecting the base class (covariant specialization); in
the Visitor pattern this cannot be done smoothly, without resorting to casts.

Thus, with double dispatch, Visitor ceases to be a design pattern and becomes more a good program-
ming technique that allows to abstract operations from the elements these operations are to be performed
on. This is the case, for instance, of a compiler: the visitor classes are all the classes performing several
controls on the abstract syntax tree, and the nodes of the tree are the elements that are to be visited.

Dynamic overloading and covariant specialization come in hand also in implementing many other
design patterns, that, as already hinted, are often based on the collaboration of separate class hierarchies.
Another example is the pattern Observer [GHJV95], where the instances of classes of the first hierarchy
(the observables) notify the instances of another hierarchy (the observers) when some changes took
place. The observable instance typically passes itself to the observer, through a method called update;
the parameter of this method is of type Observable, the base class of all the observable classes. Thus, in
order to perform useful operation in the method update, in case the language does not provide double
dispatch, the observer classes typically have to check the dynamic type of the observable and perform
type casts.

Double dispatch also enables safe covariant specialization of methods, i.e., subclasses are allowed to
redefine a method also by specializing its argument (we refer the reader to [Cas95a] for a clear treatment of
this subject). A typical application of covariant specialization is binary methods [BCC+95], i.e., methods
that act on objects of the same type: the receiver and the argument.

Also binary methods can be easily implemented with multi methods as suggested in [BCC+95]. For
instance, exploiting the usual example of Point and ColorPoint, we can implement the method equals
as illustrated in Figure 5. Equality of points can be tested smoothly as follows:

11

Point *p1 = new Point;
Point *p2 = new ColorPoint;
Point *p3 = new ColorPoint;
p1->equals_DB(p2); // (1) invoke Point::equals(Point *)
p2->equals_DB(p1); // (2) invoke Point::equals(Point *)
p2->equals_DB(p3); // (3) invoke ColorPoint::equals(ColorPoint *)

Notice that all the branches of the same multi method are implicitly inherited by the subclass, so
ColorPoint is able to handle also Point instances passed to equals: in this case the implementation
Point::equals(Point *) will be called. However, the programmer of ColorPoint may want to consider
a ColorPoint and a Point different (since the latter has no color); in that case he can simply redefine
that branch in ColorPoint as follows

branches equals
bool (Point *p) { return false; }
...
endbranches

Of course, in this case, the second invocation in the previous code snippet would invoke
ColorPoint::equals(Point *).

Let us observe that it is crucial to have the possibility of using both dynamic overloading (using _DB
methods) and static overloading, as in the case of ColorPoint::equals(ColorPoint *) that relies on
the implementation of Point::equals by using static overloading.

5 Advanced issues

Branches of a multi method can actually be seen as standard C++ overloaded methods apart from, as
hinted before, that they are implicitly inherited in subclasses even in case the subclass introduces a new
branch4. However, the first parameter assumes a more important role, since it is used for double dispatch
when the _DB corresponding method is called. The other possible parameters do not participate in double
dispatch but they still have an important role in static overloading.

In particular, a _DB is created with the first parameter of a type that is the super type among the
all the types used for declaring the first parameter of the branches of a multi method (considering also
the branches of the same method defined in the superclasses); for instance, considering the example in
Figure 1, the methods m_DB(T1 *) and n_DB(S1 *, V1 *) are created for the classes A and B, since T1
is the topmost class among T2 and T3 (and S1 is the topmost class among S2 and S3). Notice that, since
only the first parameter is used for dynamic selection, the other parameters, e.g., V1 in this example, are
not specialized and are all the same in the branches of n. However, the programmer is still allowed to
declare “unrelated” branches of the same multi method, i.e., the following code would still be accepted:

branches n
S (S1 *t, V1 *v) { ... }; // (1)
S (S2 *t, V1 *v) { ... }; // (2)
T (S2 *t, V2 *v) { ... }; // (3)
T (S3 *t, V2 *v) { ... }; // (4)
D (T1 *t, C *v, D *x) { ... }; // (5)

endbranches
4In C++ you should use the clause using in order to make the overloaded versions of an overloaded method m visible

in a subclass, in case the subclass introduces a new version for m.

12

and the following methods are created:

• S n_DB(S1 *, V1 *) for (1) and (2)

• T n_DB(S2 *, V2 *) for (3) and (4)

• D n_DB(T1 *, C *, D *) for (5)

thus, static overloading is still used when one calls one of these methods, according to the static type of
all the arguments; then the most specialized one is dynamically selected using the actual dynamic type
of the first argument5:

A *a = new A;
S1 *s1 = new S2;
S2 *s2 = new S3;
V1 *v1 = new V2;
V2 *v2 = new V2;

a->n_DB(s1, v1);
// statically select S n_DB(S1 *, V1 *)
// dynamically select S n(S2 *, V1 *)
a->n_DB(s1, v2);
// statically select S n_DB(S1 *, V1 *)
// dynamically select S n(S2 *, V1 *)
a->n_DB(s2, v2);
// statically select S n_DB(S2 *, V2 *)
// dynamically select S n(S3 *, V2 *)

As a degenerate example let us consider the following one:

class A {...};
class B : public A {...};
class C : public A {...};

class D {
branches m
void (B *b) {...};
void (C *b) {...};
endbranches
};

B and C are not related, they are simply sibling classes since they inherit from the same class. For this
reason, two methods are created:

void m_DB(B *);
void m_DB(C *);

Thus, basically, this case reduces to standard overloading even when using m_DB (unless this multi method
is further specialized in the subclasses with subclasses of B and C). Probably, what the programmer wanted
to write is:

5The example can be found in the file slightly diff.h in the directory tests.

13

class D {
branches m
void (A *b) {...};
void (B *b) {...};
void (C *b) {...};
endbranches
};

In fact, in this case, only one method, m_DB(A *), is created, and double dispatch can be exploited.

5.1 Automatic code inspection

There can be many cases where you have two different unrelated client class hierarchies, say Client1
and Client2, that use the same target classes, say Ti, in their multi methods. It is likely that these
client hierarchies are in separate files, say c1.h and c2.h, respectively. The question may raise: Which
client header file should I preprocess first? If I preprocess c1.h first, and then c2.h, will the previous
modifications made to header files of the Ti be lost? Fortunately, the answer is no.

Indeed, when doublecpp inspects a file, before actually modifying any source (or generating new files),
it inspects possible previously generated output files (That’s why you should always be consistent in using
different header file extensions for input and output header files – see the options --input-header-ext
and --output-header-ext in Section 3). According to the “traces” that doublecpp left in the generated
files, it will not overwrite modifications required before by other client class files.

The modifications made by doublecpp in the output files are surrounded by comment blocks of the
shape:

// doublecpp: ...<some explainations>..., DO NOT MODIFY
...
// doublecpp: end, DO NOT MODIFY

Of course, it is crucial that you never modify these blocks of code, otherwise, on a successive invocation
of doublecpp you can experience problems.

6 Known limitations

doublecpp is free software and it comes with sources being under the GPL license. If you feel like adding
a feature, or remove some of the limitations below, the author welcomes patches :-)

• In this version of doublecpp the first parameter of a multi-method branch has to be a pointer type
(references are not handled yet).

• Argument types or super classes that have nested templates are not handled yet.

• const methods are not handled yet.

• There are problems when parameters in a multi method branch are not classes but typedefs (for
instance ostream). In particular you cannot use such types in any parameter of a multi method.

• Possible ambiguities and type errors will be reported by the C++ compiler itself, not by doublecpp;
indeed doublecpp reduces error checks to the minimum, relying on the C++ compiler (we don’t
think this is a limitation anyway). However, the #line directives inserted by doublecpp in generated
files will make the compiler errors refer to the original sources, thus understanding where the error
is should be quite easy.

14

References

[BC97] John Boyland and Giuseppe Castagna. Parasitic Methods: Implementation of Multi-Methods
for Java. In Proc of OOPSLA ’97, volume 32(10) of ACM SIGPLAN Notices, pages 66–76.
ACM, 1997.

[BCC+95] K. B. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens, and B. C.
Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):217–238, 1995.

[BCV05] L. Bettini, S. Capecchi, and B. Venneri. Translating Double-Dispatch into Single-Dispatch.
In Proc. of Int. Workshop on Object-Oriented Developments (WOOD) 2004, volume 138 of
ENTCS. Elsevier, 2005.

[BCV06] L. Bettini, S. Capecchi, and B. Venneri. Double Dispatch in C++. Software – Practice and
Experience, 36(6):581 – 613, 2006.

[Cas95a] G. Castagna. Covariance and contravariance: conflict without a cause. ACM Transactions on
Programming Languages and Systems, 17(3):431–447, 1995.

[Cas95b] G. Castagna. A meta-language for typed object-oriented languages. Theoretical Computer
Science, 151(2):297–352, 1995.

[Cas97] G. Castagna. Object-Oriented Programming: A Unified Foundation. Progress in Theoretical
Computer Science. Birkhauser, 1997.

[DG87] L.G. DeMichiel and R.P. Gabriel. The Common Lisp Object System: An Overview. In Proc.
ECOOP, volume 276 of LNCS, pages 151–170. Springer, 1987.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[Mar98] Robert C. Martin. Acyclic Visitor. In Martin, Riehle, and Buschmmann, editors, Pattern
Languages of Program Design 3, pages 94–104. Addison-Wesley, 1998.

[MHH91] W.B. Mugridge, J. Hamer, and J.G. Hosking. Multi-Methods in a Statically-Typed Pro-
gramming Language. In P. America, editor, Proc. ECOOP ’91, volume 512 of LNCS, pages
307–324. Springer, 1991.

15

